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Executive Summary

This report gives a detailed description of investigations conducted at the University of
Akron by Prof. Ernie Pan’s group in close collaboration with AFRL Sensors Directorate
(Dr. John Albrecht AFRL/RYDX). Through this work, we have co-developed electro-
mechanical simulations that take into account material polarization and piezoelectric prop-
erties that cannot be suppressed in many group III–V semiconductor nanostructures. This
work addresses key physics issues in these polarized semiconductors and also provides
laboratory researchers with access to design and analysis specifics that are not accessible
by or do not exist in the limited physical models available in commercial semiconductor
modeling software. The specifics of these models and related publications are provided in
the chapters of this report.

A crucial development in these investigations is the simultaneous multi-physics treat-
ment of lattice polarization coupled to both electronic and mechanical properties. In par-
ticular, we would like to point out that the fully-coupled piezoelectric model developed
jointly with AFRL/SN is now attracting worldwide attention in the wurtzite semiconduc-
tor community (seen through numerous recent citations and contacts made by the broader
academic community) where the electro-mechanical coupling can be a dominant, if often
overlooked, physical feature. In addition to the program developed at AFRL to model
strongly polarized layered semiconductor well structures, the program developed at Akron
will be continuously tested during the new phase to insure transition to the laboratory. To
help with this transition, we plan to add a user-friendly interface so that in the near future,
scientists at AFRL and students/faculties at Akron can easily use the program for designing
strained semiconductor structures with tailored piezoelectric interactions.

Furthermore, the transition of this work for attacking important problems for AFRL
researchers is seen in Chapter 5 on nanocolumn structures. In the joint laboratory work
between AFRL/RY and AFRL/RX, the strain profile is sought in epitaxial nanocolumn
structures of GaN for development of near defect-free template critical for device and cir-
cuit technologies of interest to the Air Force. We have shown in collaboration with Dr.
Albrecht that the strain profile in small 100 nm columns has a decay length far shorter than
the typical column height used in experiments (microns). This strain profile calculation
will allow AFRL to interpret and verify spectroscopic and microstructural experimental
data which seemed to indicate certain critical strain properties. This theoretical work is
also sufficiently general to be applied to a broader category of problems, including hol-
low cylindrical nanocolumns of piezoelectric materials and columns with direct electrical
contacts by metals.

Also in this work, we have co-derived, by virtue of the unified Stroh formalism, the ex-
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tremely concise and elegant solutions for two-dimensional and (quasi-static) time-dependent
Green’s functions in anisotropic magnetoelectroelastic multiferroic bimaterials with a vis-
cous interface subjected to an extended line force and an extended line dislocation located
in the upper half-plane. It is found for the first time that, in the multiferroic bimaterial
Green’s functions, there are twenty five static image singularities and fifty moving image
singularities in the form of the extended line force and extended line dislocation in the
upper or lower half-plane. It is further observed that, as time evolves, the moving image
singularities, which originate from the locations of the static image singularities, will move
further away from the viscous interface with explicit time-dependent locations. Moreover,
explicit expression of the time-dependent image force on the extended line dislocation due
to its interaction with the viscous interface is derived, which is also valid for mathemat-
ically degenerate materials. These Green’s functions can not only be directly applied to
the study of dislocation mobility in the novel multiferroic bimaterials, they can also be uti-
lized as kernel functions in a boundary integral formulation to investigate more complicated
boundary value problems where multiferroic materials/composites are involved.

It was recently discovered that inclusions, fatigue damage and other types of mate-
rial imperfections and defects in metals can be nondestructively detected by noncontact-
ing magnetic measurements that sense the thermoelectric currents produced by directional
heating and cooling. Since detection of small defects in thermoelectric materials is ulti-
mately limited by intrinsic thermoelectric anisotropy and inhomogeneity of the material to
be inspected, a thorough study is required on their impact to the nondestructive capability.
Therefore, in this new joint investigation the induced electric current densities and thermal
fluxes are first derived for a steady line heat source in an inhomogeneous and anisotropic
thermoelectric material. The exact closed-form solutions are obtained by converting the
original problem into two inhomogeneous Helmholtz equations via eigenvalue/eigenvector
separation. The material properties are assumed to vary exponentially in the same man-
ner in an arbitrary direction. For the corresponding homogeneous but anisotropic material
case, we also present an elegant formulation based on the complex variable method. It is
shown that the induced magnetic fields can be expressed in a concise and exact closed form
for a line heat source in an infinite homogeneous anisotropic material and in one of the
two bonded anisotropic half-planes. Our numerical results demonstrate clearly that both
property anisotropy and gradient in thermoelectric materials can significantly influence the
induced thermoelectric currents and magnetic fields.
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Chapter 1

Strain and piezoelectric fields in
embedded quantum wire arrays

1.1 Introduction
Embedded quantum wires (QWRs) are semiconductor structures with electron confinement
in two dimensions achieved using materials of different band gaps. The structures are
either fabricated or directly grown such that long (on the order of 1 m) and narrow (less
than tens of nanometers) sections of semiconductor are surrounded by a cladding of a
larger band gap material. The embedded situation is in contrast to free-standing or etched
QWRs which are nanostructures surrounded at least partially by vacuum in order to achieve
confinement, resulting in several key differences in physical behavior. The embedded wires
almost always exhibit large strain fields owing to the inevitable lattice mismatch between
the crystalline structure of the wire material and that of its surroundings. Another key
difference is that the embedded wires can be electronically coupled at larger inter-wire
spacing because the typical electron confinement is far weaker than that provided by the
semiconductor-vacuum interface.

Embedded wire arrays can be separated into two main categories of infinite-space and
half-space substrates that have distinct experimental realizations and theoretical treatments
[6–8]. The infinite-space substrate case corresponds to the physical situation where a self-
organization process results in embedded vertical wires orthogonal to the growth surface.
Recently, vertical arrays have been proposed for a device structure to provide efficient car-
rier extraction mechanism in QWR solar cells [9]. The half-space substrate or ‘buried wire’
case corresponds to the situation where wires are defined lithographically from epitaxial
films and overgrown to result in embedded wires oriented in the plane of the surface.

Strain and electric fields in nanoscale semiconductor structures induced by QWRs have
been extensively investigated because the presence and magnitude of these fields are crucial
for understanding the electronic and optical performance [10]. However, analytical studies
are mostly restricted to a single QWR with the substrate being further limited to the purely
elastic solid only [11–13], with some recent advances on size-dependent strain [14] and
on nonuniform misfit eigenstrain [15]. As QWR arrays can be self-organized layer-by-
layer and also can be grown in different orientations, a more realistic QWR semiconductor

14



model should include the electromechanical coupling present with closely spaced QWRs
[1, 2, 16–22].

In this paper, a recently reported exact closed-form solution for a single QWR within
a piezoelectric substrate [23] is extended to the QWR array case with multiple QWRs.
While the QWR geometry can be arbitrary, the square shape is assumed in the analysis of
the induced elastic and electric fields and of the interaction due to multiple QWRs. Both
infinite and half-space GaAs substrates are considered with growth orientations of (001)
and (111). The size of the individual square QWR is 4×4 nm2, and the number of QWR
array is 1× 1, 3× 3, 5×5, 7×7 for the full-space substrate and 1× 1, 2× 3, 3× 5, 4× 7
for the half-space substrate. We remark that in this paper the simple inclusion model is
followed as the difference between inclusion and inhomogeneity models is only about 10%
within or close to the QWR region [24]. In what follows, we will first describe the problem
in more detail with a brief review of the necessary equations for the induced strain and
electric fields. Then numerical examples will be carried out and presented in terms of
curves and contours. Finally, conclusions will be drawn on the QWR array induced elastic
and piezoelectric features.

1.2 Problem description
We assume for the present discussion that simple arrays of QWRs with square cross-section
are embedded in either GaAs(001) or GaAs(111) substrates. Each QWR has dimensions of
4 nm× 4 nm and the center-to-center wire distance is 8 nm as in Figure 1.1(c). The half-
space substrate case is distinguished from the infinite one by the presence of a free surface
2 nm from the top row of the array as in Figure 1.4(d). The lattice misfit strain within
the wire is hydrostatic, i.e., γ∗xx = γ∗yy = γ∗zz = 0.07 = (a− ao)/ao, where a and ao are the
lattice constants in the QWR and surrounding material, respectively. This approximation
gives an upper bound on the strain present in the QWR. These strains would in reality
be decreased by the presence of any dislocations or other lattice defects often present in
overgrown cladding layers.

The elastic properties for modeling GaAs (001) are C11 = 118× 109 N/m2, C12 =
54×109 N/m2, and C44 = 59×109 N/m2. The piezoelectric constant and permeability for
GaAs(001) are, respectively, e14 =−0.16 C/m2 and ε11 = 0.11×10−9 C/V ·m. For (001)-
oriented structures, the global coordinates x, y, and z are coincident with the crystalline
axes, and for (111)-oriented structures the x-axis is along [112̄], the y-axis along [1̄10],
and the z-axis along the [111] direction of the GaAs crystal structure [2]. The boundary
condition on the surface for the half-space case is assumed to be traction-free and insulating
[25]. The specific QWR arrays are 1×1, 3×3, 5×5, 7×7 wires for full-space substrate
and 1×1, 2×3, 3×5, 4×7 wires for the half-space substrate as shown in Figures 1.1(c)
and 1.4(d). The dashed lines in these figures indicate the locations at which the induced
fields will subsequently be plotted and analyzed in detail.

For a QWR of polygonal shape within either an infinite or half-space substrate, the
lattice misfit induced strain and electric fields can be expressed in exact closed form as in
Ref. 23. While we briefly list these induced fields below, the complete derivation can be
found in Ref. 23.
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For an arbitrary side (line segment) of the polygon starting from point 1 (x1,z1) and
ending at point 2 (x2,z2), the outward normal components ni(x) are constants, given by

n1 = (z2− z1)/l n2 =−(x2− x1)/l (1.1)

where l =
√

(x2− x1)2 +(z2− z1)2 is the length of the line segment (or the side of the
polygon).

The strain and electric fields due to this side of the QWR polygon were found to be [23]

γβα(X) = 0.5niCiJLmγ
∗
Lm

l
π

Im

{
AJRhR,α(X ,Z)AβR +

4

∑
v=1

AJRgv
R,α(X ,Z)Qv

Rβ

}

+0.5niCiJLmγ
∗
Lm

l
π

Im

{
AJRhR,β (X ,Z)AαR +

4

∑
v=1

AJRgv
R,β (X ,Z)Qv

Rα

}
(1.2)

γ2α(X) = 0.5niCiJLmγ
∗
Lm

l
π

Im

{
AJRhR,α(X ,Z)A2R +

4

∑
v=1

AJRgv
R,α(X ,Z)Qv

R2

}
(1.3)

Eα(X) =−niCiJLmγ
∗
Lm

l
π

Im

{
AJRhR,α(X ,Z)A4R +

4

∑
v=1

AJRgv
R,α(X ,Z)Qv

R4

}
(1.4)

where the summation convention is applied to repeated indices. Lowercase indices range
from 1 to 3, and upper case indices range from 1 to 4. Greek indices, e.g. α and β , only
take on the values 1 or 3. Im(z) is the imaginary part of the complex number z. CiJLm are the
extended material coefficients (elastic, piezoelectric, and permeability), and the matrices A
and Q in Eqs. (1.2)–(1.4) are functions of these coefficients. Finally matrices h and g are
functions of the arbitrary field point X = (X ,Z), which are given in Ref. 23. We point out
that these expressions of the strain and electric fields are for the half-space substrate case
with the first terms (that is, the ones proportional to the matrix h) being simply the results
for the corresponding infinite substrate case.

We finally remark that Eqs. (1.2)–(1.4) are the strain and electric fields induced by
one side of the QWR polygon. In order to find the induced fields due to the whole QWR
polygon, we simply add the results from all sides of the polygon together. Similarly, for the
multiple QWR case (or QWR array), we add the contributions from all the QWR polygons.

1.3 Results and analysis

1.3.1 QWR array in infinite substrate GaAs
Figures 1.1(a) and (b) show the variation of the hydrostatic strain along the positive x-axis
for QWR arrays 1× 1 to 7× 7 in infinite-space GaAs (001) and (111) substrates, respec-
tively. The corresponding geometry and coordinates are sketched in Figure 1.1(c). It is
clearly shown in Figures 1.1(a) and (b) that the hydrostatic strains inside each QWR are
nearly the same for different QWR array sizes, while the strains outside the QWRs are
slightly different. We further remark that the induced hydrostatic strain inside the QWR is
large, dominated by the misfit strain and therefore relatively insensitive to the number of

16



wires in a particular array. On the other hand, the calculated strain fields in the cladding
outside of the QWR regions are more strongly influenced by the number of wires in the
array. It is also observed that the distribution of the hydrostatic strain inside the QWR
is different for the two substrate cases. While the strain curve inside the QWR is curved
down for the (001) case, it is curved up for the (111) substrate case; the magnitude inside
the QWR of (001) is slightly larger than that inside the QWR of (111). The induced hydro-
static strain inside the QWR is smaller than the preexisting misfit strain (0.14 for the misfit
hydrostatic strain) due to the strain relaxation of the substrate.

The hydrostatic strain contours induced by QWR arrays within an infinite cladding are
plotted in Figure 1.2. Panels (a) and (b) show the results for a single QWR (that is, a 1×1
QWR array) and a 3× 3 array for the (001) substrate. Panels (c) and (d) are for the cor-
responding results for the (111)-oriented substrate. We observe again that the hydrostatic
strain distributions for the two orientations are different, with even a logarithmic singularity
existing at the corners of the GaAs (111) QWR [23].

As was observed recently, for QWR with GaAs (111) orientation, a large electric field
could be also induced [2]. However, there is no literature report on the interaction of the
induced electric field in a QWR array. Figure 1.3 presents the distribution of the electric
field components Ex and Ez along the positive x-axis in an infinite substrate of GaAs (111)
due to QWR arrays ranging in size from 1×1 to 7×7. It is extremely interesting that while
the component Ex within the QWR is relatively independent of the number of QWRs (Fig-
ure 1.3(a)), just like the strain distribution within the QWR, component Ez is completely
different for different numbers of QWRs (Figure 1.3(b)).

1.3.2 QWR array in half-space substrate GaAs
Having studied the elastic and electric fields in infinite substrates GaAs(001) and GaAs(111),
we now look at the case where the QWR arrays are within the half-space substrate. For this
case, the surface boundary condition is assumed to be traction-free and electrically insulat-
ing [25] and the distance of the first row of the QWR array to the surface is d = 2 nm as
shown in Figure 1.4(d). The distance among neighboring QWRs is the same as for the in-
finite substrate case, that is, the QWRs are separated by a distance of 8 nm (Figure 1.4(d)).

The first three subfigures of Figure 1.4 display hydrostatic strain variations along three
different lines in the half-space GaAs (001) substrate. The QWR arrays studied are 1×
1, 2× 3, 3× 5, and 4× 7. While Figure 1.4(a) shows the variation of the hydrostatic
strain along the z-axis, Figures 1.4(b) and (c) show the variation along the horizontal line
at z = −4 nm (which is along the center of the first row of the QWR array) and along
the free surface, respectively. It is apparent that the elastic fields both inside and outside
the QWR have been greatly enhanced by the free surface condition, combined with the
interaction among QWRs. This feature is particularly clear for the elastic strain close to
the free surface where, for instance, the hydrostatic strains inside the QWR can be larger
than the hydrostatic misfit strain (0.14) (array 4×7 in subfigures (a) and (b) of Figure 1.4).
Furthermore, due to the existence of the free surface, the strain fields inside and outside
the QWR are now clearly different for different numbers of QWRs (Figure 1.4(a)–(c)).
The corresponding hydrostatic strain distributions within the (111) half-space substrate are
shown in Figure 1.5. Again, similar features can be observed whilst the strain distribution
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Figure 1.1: Variation of the hydrostatic strain for QWR arrays buried in (a) (001)-oriented
and (b) (111)-oriented GaAs substrates. Panel (c) gives the geometric layout of the QWR
arrays in an infinite space and the dashed line indicates the location of the cut line z = 0 for
the field calculations of Figures 1.1 and 1.3.
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Figure 1.2: Contour plots of total hydrostatic strain for QWR arrays buried in infinite
spaces. (a) 1× 1 and (b) 3× 3 arrays in (001)-oriented GaAs substrates; (c) 1× 1 and
(d)3×3 arrays in (111)-oriented substrates.
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(111)-oriented substrates.
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Figure 1.4: Variation of the hydrostatic strain for QWR arrays buried in half space (001)-
oriented substrates. Hydrostatic strain is plotted for cut lines (a) along the z-axis, that is,
x = 0, (b) along the horizontal line z =−4 nm, and (c) along the free surface z = 0. Panel
(d) gives the geometric layout of the QWR arrays in a half space and the dashed lines
indicate the locations for the field calculations of Figures 1.4–1.8.
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is no longer symmetric as for the (001) case.
Figure 1.6 shows the contour of the hydrostatic strain in the half-space substrate GaAs,

with QWR array 1×1 in (a) and 3×3 in (b) of GaAs(001), and QWR array 1×1 in (c) and
3×3 in (d) of GaAs(111). Comparing these contours to those in the corresponding infinite
substrate (subfigures (a)-(d) of Figure 1.2), we observed that the free surface enhances
the magnitude and alters the distribution of the strain fields. The effect of the substrate
orientation on the strain distribution is also apparent by comparing the symmetry of the
contours in Figures 1.6(a) and (b) with the asymmetric contours in Figures 1.6(c) and (d).

Figure 1.7 shows the distribution of the electric field components Ex and Ez along the
free surface of the half-space substrate GaAs(111) for QWR arrays 1× 1 to 4× 7. It is
obvious that the electric field distribution is closely dependent on the size of the arrays, and
the difference can be clearly identified for the field outside the QWRs (e.g. Figure 1.7(b)).

Finally, Figure 1.8 shows the variation of the electric field components Ex and Ez along
the z-axis in the half-space GaAs (111) substrates. Again, the QWR array sizes range from
1×1 to 4×7. The figure shows clearly the correlation between the number of QWRs and
the electric field distribution, and this result could be useful to QWR-related device design.

1.4 Conclusions
A recent exact closed-form solution for a single QWR is extended to the QWR array case
where each QWR is of a square shape. The QWR array can be within an infinite substrate
or a half-space substrate. The induced elastic and electric fields are calculated for the
substrate made of GaAs(001) and GaAs(111). The arrangement of QWR arrays is 1× 1,
3× 3, 5× 5, or 7× 7 for the infinite-space substrate, and 1× 1, 2× 3, 3× 5, or 4× 7 for
the half-space substrate. Comparing the induced field within the infinite substrate to that
in the half-space substrate, we observed that the existence of the free surface can greatly
enhance the magnitude of the induced elastic and electric fields. It is particularly interesting
that different number of QWRs has only slight influence on the elastic field inside the
QWR. While different number of QWRs can affect the elastic field outside, this field is
usually much smaller in magnitude than that inside. For the electric field, however, different
number of QWRs can produce totally different field distributions both inside and outside
the QWRs, in sharp contrast to the insensitivity of the elastic field inside the QWR to the
number of QWRs.
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Figure 1.5: Variation of the hydrostatic strain for QWR arrays buried in half space (001)-
oriented substrates. Hydrostatic strain is plotted for cut lines (a) along the z-axis, that is,
x = 0, (b) along the horizontal line z = −4 nm, and (c) along the free surface z = 0. The
cut lines are shown schematically in Figure 1.4(d).
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Figure 1.6: Contour plots of total hydrostatic strain for QWR arrays buried in half-spaces.
(a) 1× 1 and (b) 3× 3 arrays in (001)-oriented GaAs substrates; (c) 1× 1 and (d)3× 3
arrays in (111)-oriented substrates.
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Figure 1.7: Variation of electric field components (a) Ex and (b) Ez along the free surface
(that is, z = 0 as shown in Figure 1.4(d)) for the case of QWR arrays buried in half-space
(111)-oriented substrates.
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Figure 1.8: Variation of electric field components (a) Ex and (b) Ez along the z-axis (that
is, x = 0 as shown in Figure 1.4(d)) for the case of QWR arrays buried in half-space (111)-
oriented substrates.
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Chapter 2

Elastic and piezoelectric fields in
quantum wire semiconductor
structures—a boundary integral
equation analysis

2.1 Introduction
Quantum well (QW), quantum wire (QWR), and quantum dot (QD) semiconductor nanos-
tructures with their associated degrees of quantum carrier confinement can be tailored to ad-
dress the electron energy state requirements of future electronic and optoelectronic devices
[26]. Frequently, the nanostructures under consideration are formed through heteroepitaxy.
Therefore the lattice misfit conditions, or pseudomorphically induced strain fields, are cen-
tral to determining and engineering the electronic states of the quantum mechanical system
through modifications to the electronic structure (changes in band gap and effective mass)
of the constituent materials and direct modifications to the confining potential (changes in
lattice polarization). It is crucial from a device modeling perspective that the induced strain
and electric fields in the nanostructure be modeled accurately and efficiently.

This study is focused on the elastic and piezoelectric field prediction in strained QWR
structures. From the field of continuum mechanics, we have a first approximation, the well-
known Eshelby inclusion method [27–29], which has been successfully applied to study the
induced strain/electric fields in many structures. In the Eshelby treatment, the lattice misfit
between the QWR and substrate (or matrix) is imposed but the QWR material is assumed
to be the same as its substrate [10, 18, 23, 30–32]. The advantage of the Eshelby inclusion
method is its simplicity and the induced elastic and electric fields can be found analytically
for both 2D QWR and 3D QD cases.

Recently, the relative accuracy and underlying assumptions of the inclusion model have
come under scrutiny. A structural inhomogeneity model which considers the relevant and
different elastic material properties present in realistic QWR/QD structures was developed
[24, 33] and compared with the inclusion method. In our previous work [24], the issue of
the homogeneous inclusion vs. structural inhomogeneity in the context of strained QWRs
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was studied in detail for purely elastic zincblende semiconductors using the boundary in-
tegral equation method (BEM). Numerical examples were given for InAs/GaAs QWRs in
both (001) and (111) growth directions for square and trapezoidal QWR cross-sections.
Several results were obtained:

1. As expected, the strain fields predicted in the substrate but far away from the QWR
were very similar for both models because the internal details of the wire composition
are irrelevant to the far-field response.

2. For points within or near to the QWR, the variation in predicted field strengths be-
tween the models can be as high as 10% for these materials and geometries.

3. Although the singular behavior present near the sharp corners of the QWR looks
similar in form for both models, the amplitudes of the singularity are significantly
different in some cases.

A more complete picture of the strain effects on quantum heterostructures is gained
by extending the calculations to include any spontaneous and piezoelectric polarizations
which will directly change the local electrostatic potential. So far, the differences present
in the induced polarization electric fields as obtained by both the homogeneous inclusion
and structural inhomogeneity models have not been reported in the literature, which is the
main motivation of this study. In this paper we therefore develop a simple BEM formulation
to investigate the elastic and electric fields present in QWR semiconductor structures. Our
BEM algorithm is based on constant-element discretization with analytical kernel func-
tion integration. The corresponding BEM routine is then applied to systems composed of
InAs QWRs in (001)- and (111)-orientated GaAs and of InN QWRs in (0001)- and (1000)-
oriented wurtzite AlN ((1000) means along the polar direction, i.e., a direction normal to
the (0001)-axis). The QWRs considered are polygonal and the formalism is sufficiently
general to include the possibility of irregular shapes. While our BEM program includes the
simple homogeneous inclusion as a limiting case, the Eshelby inclusion solution developed
before [24] is also applied to check the accuracy of our BEM program. Though the elastic
strain features from both the inclusion and inhomogeneity models are consistent with pre-
vious reports [24, 33], we will show that the induced electric fields can be very different.
The main conclusion is that the inhomogeneous material properties need to be taken into
account to reliably predict the induced electric fields in strained QWRs.

2.2 Problem description and basic equations
A general QWR problem is illustrated by Figure 2.1, where, to facilitate our discussion, we
have defined the following extended strain:

γI j =

{
γi j I = i = 1,2,3
−E j I = 4

(2.1)

In Eq. (2.1), γi j is the total elastic strain tensor and Ei the ith Cartesian component of the
total electric field, which are related to the total elastic displacement ui and total electric
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potential φ in the usual way by

γi j =
1
2

(
∂ui

∂x j
+

∂u j

∂xi

)
E j =− ∂φ

∂x j

(2.2)

The total extended strain is the sum

γI j = γ
e
I j + γ

∗
I j (2.3)

where γ∗I j is the extended eigenstrain in the QWR, and γe
I j the extended strain that appears

in the generalized constitutive relation [24] as

σiJ = CiJKlγ
e
Kl (2.4a)

or
σiJ = CiJKl(γKl−χγ

∗
Kl) (2.4b)

where summation over repeated indices K, l is implied and χ is equal to one if the observa-
tion point is within the QWR domain V and zero outside. It is clear that, in this paper, the
contribution from the spontaneous polarization is not considered. Furthermore, the corre-
sponding material properties belong to the QWR and substrate should be used in Eq. (2.4)
when calculating the induced extended stress, which is defined as

σiJ =

{
σi j J = j = 1,2,3
Di J = 4

(2.5)

where σi j and Di are the stress and electric displacement, respectively. In Eq. (2.4), the
general moduli are defined as

CiJKl =


Ci jkl J,K = j,k = 1,2,3
eli j J = j = 1,2,3; K = 4
eikl J = 4; K = k = 1,2,3
−εil J = K = 4

(2.6)

with Ci jlm, ei jk and εi j being the elastic moduli, piezoelectric coefficients, and dielectric
constants, respectively. For completeness, we further define the extended displacement as

uI =

{
ui I = i = 1,2,3
φ I = 4

(2.7)

Let us assume that the general misfit strain γ∗I j is uniform within the QWR domain and
is zero outside. The interface between the QWR and matrix is labeled S. We also denote
Cw

iJKl and Cm
iJKl as the general moduli of the QWR and matrix materials, respectively. For
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the homogeneous inclusion problem, Cw
iJKl =Cm

iJKl . If there is no body force and no electric
charge within the QWR system, one can easily show that, for the matrix domain,

Cm
iJKlu

m
K,li = 0 (2.8)

and for the QWR domain,
Cw

iJKlu
w
K,li = Cw

iJKlγ
∗
Kl,i (2.9)

It is clear that the right hand side of Eq. (2.9) is equivalent to a body force defined as

f (w)
J =−Cw

iJKlγ
∗
Kl,i (2.10)

which is also called the equivalent body force of the eigenstrain [23, 29]. This equivalent
body force will be employed in the next section to convert the contribution of the eigen-
strain to a boundary integral along the interface of the QWR and its substrate. Again, the
superscripts m and w denote quantities associated with the matrix and QWR, respectively.

2.3 Boundary integral equations and constant-element dis-
cretization

To solve the problem shown in Figure 2.1, we apply the BEM to both the QWR and its
matrix/substrate. The boundary integral formulation can be expressed as [24, 33]

bIJ(X)um
J (X) =

∫
S
[Um

IJ(X,x)tm
J (x)−T m

IJ (X,x)um
J (x)]ds(x) (2.11)

for the matrix, and

bIJ(X)uw
J (X) =

∫
S
[Uw

IJ(X,x)(tw
J (x)+ f w

J (x))−T w
IJ (X,x)uw

J (x)]ds(x) (2.12)

for the QWR.
In Eqs. (2.11) and (2.12) tJ and uJ are the traction and displacement components, and

x and X are the coordinates of the field and source points, respectively. The coefficients
bIJ equal δIJ if X is an interior point and δIJ/2 at a smooth boundary point. For points
at complicated geometry locations, these coefficients can be determined by the rigid-body
motion method [34]. Furthermore, in Eq. (2.12), f w

J is the traction induced by the misfit
eigenstrain inside the QWR, which is given by Eq. (2.10).

The Green’s functions UIJ and TIJ in Eqs. (2.11) and (2.12) are taken to be the special
2D Green’s functions for the full plane [25, 35]. The indices I and J indicate the Jth

Green’s (general) displacement/traction (at x) in response to a (general) line force in the Ith

direction (applied at X). Note that the Green’s functions are in exact closed form, and thus
their integration over constant elements can be carried out exactly as discussed below. This
is computationally desirable as it is very efficient and accurate for the calculation.

Employing constant-value elements, we divide the boundary (that is, the interface) into
N segments with the nth element being labeled as sn. The constant values uJn and tJn
on the nth element are equal to the displacement and traction values at the center of the
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element. Under this assumption, the boundary integral equations (2.11) and (2.12) for the
surrounding matrix and QWR domains are reduced to the following algebraic equations

bIJum
J +

N

∑
n=1

(∫
sn

T m
IJ ds

)
um

Jn =
N

∑
n=1

(∫
sn

Um
IJds

)
tm
Jn (2.13)

and

bIJuw
J +

N

∑
n=1

(∫
sn

T w
IJ ds

)
uw

Jn =
N

∑
n=1

(∫
sn

Uw
IJds

)
(tw

Jn +Cw
pJKlγ

∗
Klnp) (2.14)

The difference between Eqs. (2.13) and (2.14) is the traction induced by the misfit eigen-
strain inside the QWR in Eq. (2.14). The remaining problem is to find suitable Green’s
functions UIJ and TIJ , as well as their integrals over each element sn, which are the ker-
nel functions in these equations. Next we will present the analytical integration of these
Green’s functions over an arbitrary constant element.

To carry out the line integration of the Green’s functions over a constant element, we
first look at the Green’s functions in Eqs. (2.13) and (2.14). They can be expressed as
[23, 25, 35]

UIJ(x,X) =
1
π

Im{AJR ln(zR− sR)AIR} (2.15)

TIJ(x,X) =
1
π

Im
{

BJR
pRn1−n3

zR− sR
AIR

}
(2.16)

where Im stands for the imaginary part of the complex value, AIJ and BIJ are two constant
matrices related only to the material properties [35], n1 and n3 are the unit outward normal
components projected along the x- and z-directions, pR (R = 1,2,3,4) are the Stroh eigen-
values, and zR = x+ pRz and sR = X + pRZ are the field and source points, respectively.

To form an arbitrary element, we define a generic line segment representing any con-
stant element along the interface in the xz-plane, starting from point 1, (x1,z1) and ending
at point 2, (x2,z2) . In terms of the parameter t (where 0≤ t ≤ 1) , any constant line element
can be parameterized as

x = x1 +(x2− x1)t
z = z1 +(z2− z1)t

(2.17)

The outward normal components along the line segment are constant, given by

n1 = (z2− z1)/l n3 =−(x2− x1)/l (2.18)

where l is the length of the line segment and the elemental length is ds = l dt.
It is observed that Eqs. (2.11) and (2.12) consist of only two different integrals pos-

sessing the following analytic results. The first integral is a function of the source point
X = (X ,Z) and is expressed in parameterized form by

hR(X ,Z)≡
∫ 1

0
ln(zR− sR)dt (2.19)
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which can be expanded as

hR(X ,Z) =
∫ 1

0
ln{[(x2− x1)+ pR(z2− z1)]t +[(x1 + pRz1)− sR]}dt (2.20)

and can immediately be evaluated to the following closed form:

hR(X ,Z) =
(x1 + pRz1)− sR

(x2− x1)+ pR(z2− z1)
ln
[

x2 + pRz2− sR

x1 + pRz1− sR

]
+ ln[x2 + pRz2− sR]−1 (2.21)

Similarly, we take the second integral as

gR(X ,Z)≡
∫ 1

0

dt
zR− sR

(2.22)

which upon evaluation leads to

gR(X ,Z) =
1

(x2− x1)+ pR(z2− z1)
ln
[

x2 + pRz2− sR

x1 + pRz1− sR

]
(2.23)

Therefore, based on the constant-element discretization, the two boundary integral equa-
tions (2.11) and (2.12) for the QWR and matrix/substrate can be cast into a system of
algebraic equations for the interface points. In matrix form, they can be expressed as

Uwtw−Twuw = fw (2.24)
Umtm−Tmum = 0 (2.25)

where the coefficient matrices U and T are the exact integrals of Green’s functions on each
constant element given in Eqs. (2.21) and (2.23), and u and t are the general displacement
and traction vectors at the center of each element. The right-hand side term fw in Eq. (2.24)
is the general equivalent force corresponding to the misfit eigenstrain within the QWR.

We assume that the matrix and QWR are perfectly bonded along the interface S, that
is, the continuity conditions um = uw and tm =−tw hold. Then the number of unknowns is
identical to the number of equations and all the nodal (general) displacements and tractions
can be determined. Furthermore, making use of the Somigliana identity, the displacement
at any location within the QWR can be easily obtained in general as

bIJuw
J +

N

∑
n=1

(∫
sn

T w
IJ dΓ

)
uw

Jn =
N

∑
n=1

(∫
sn

Uw
IJdΓ

)
(tw

Jn +Cw
pJKlγ

∗
Klnp) (2.26)

where the last force term exists exclusively for the QWR domain. Furthermore, using
Eqs. (2.1)–(2.5), we can calculate the induced elastic and electric fields at any point within
the matrix or QWR.

In summary, we have derived exact boundary integral equations for the QWR and ma-
trix domains by constant-element discretization along their interface. These equations can
be used to find the elastic and piezoelectric responses along the interface and at any loca-
tion within the QWR and its surrounding matrix. Applications of these solutions to QWR
systems are discussed in the next section.
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InAs GaAs

C11 = C22 = C33 (GPa) 83.29 118.8
C12 = C13 = C23 45.26 53.8
C44 = C55 = C66 39.59 59.4

e14 = e25 = e36 (C/m2) -0.0456 -0.16

ε11 = ε22 = ε33 (10−9C2/(N ·m2)) 0.1345808 0.110675

γ∗11 = γ∗22 = γ∗33 0.07

Table 2.1: Material properties & misfit strains in InAs(001)/GaAs(001) [1, 2]

InN AlN

C11 = C22 (GPa) 223.0 396.0
C33 224.0 373.0
C12 115.0 137.0
C13 = C23 92.0 108.0
C44 = C55 48.0 116.0
C66 54.0 129.5

e15 = e24 (C/m2) -0.22 -0.48
e31 = e32 -0.57 -0.58
e33 0.97 1.55

ε11 = ε22 (10−9C2/(N ·m2)) 132.81 79.686
ε33 132.81 97.372

γ∗11 = γ∗22 0.1357
γ∗33 0.1267

Table 2.2: Material properties & misfit strains in InN(0001)/AlN (0001) [1, 2]
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Figure 2.1: (a) A circular QWR of radius r = 10 nm in an infinite substrate, and (b) an
elliptical QWR with length of the semi-major axis a = 20 nm in horizontal x-direction and
the semi-minor axis b = 5 nm in vertical z-direction in an infinite substrate in (b).

Inclusion Inhomogeneity Relative Error (%)

Circle γxx = γzz 0.0612 0.0566 9

Ellipse γxx 0.0208 0.0134 55
γzz 0.1058 0.1133 7

Table 2.3: Strains in inclusion GaAs (001) and inhomogeneity InAs(001)/GaAs (001)

2.4 Numerical examples
Numerical examples are developed in this section for two QWR material systems. One is
the case of InAs wires in GaAs with (001)- and (111)-oriented substrates, and the other
case is for InN wires buried in AlN with (1000)- and (0001)-orientations. Both the in-
clusion and inhomogeneity models are studied. For the corresponding inclusion model,
the QWR materials take the material constants of their surrounding matrix but retain their
misfit strain conditions. The material properties and eigenstrains within the QWR in the
material coordinates are listed in Tables 2.1 and 2.2 [1, 2].

For InAs (111) and GaAs (111), the coordinate x-axis is along [112̄], y-axis along [1̄10],
and z-axis along [111] directions of the crystal [2]. Their material properties can be ob-
tained by coordinate rotations [2]. For InN(1000) and AlN(1000), the material properties
can be obtained by simply switching the coordinate directions (between x and z).

2.4.1 Circular and elliptic QWRs
The first example is for circular and elliptic QWRs in an infinite substrate (Figure 2.1). For
this case, exact solutions can be obtained for both the inclusion and inhomogeneity models.

Tables 2.3 through 2.6 compare the strain and electric fields inside both the circular and
elliptic QWRs treated as inclusions and inhomogeneities (Figure 2.1), using the material
properties and eigenstrains listed in Tables 2.1 and 2.2. We point out that for these QWR
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Inclusion Inhomogeneity Relative Error (%)

Circle γxx 0.0596 0.0551 8
γzz 0.0543 0.5000 9
2γxz -0.0149 -0.0145 2
Ex (×107 V/m) 4.020 0.2738 1368
Ez (×107 V/m) -2.843 -0.1936 1368

Ellipse γxx 0.0260 0.0196 33
γzz 0.0829 0.0861 4
2γxz -0.0081 -0.0075 9
Ex (×107 V/m) 1.235 0.4773 176
Ez (×107 V/m) -9.770 2.074 571

Table 2.4: Strains in inclusion GaAs (111) and inhomogeneity InAs(111)/GaAs (111)

Inclusion Inhomogeneity Relative Error (%)

Circle γxx 0.1184 0.1063 11
γzz 0.0984 0.0876 12
Ez (×107 V/m) -47.05 -42.65 10

Ellipse γxx 0.0515 0.0310 66
γzz 0.1555 0.1746 11
Ez (×107 V/m) -159.0 -130.1 22

Table 2.5: Strains in inclusion AlN(0001) and inhomogeneity InN(0001)/AlN(0001)

Inclusion Inhomogeneity Relative Error (%)

Circle γxx 0.0984 0.0876 12
γzz 0.1184 0.1063 11
Ex (×107 V/m) -47.05 -42.65 10

Ellipse γxx 0.0403 0.0223 81
γzz 0.1797 0.2008 11
Ex (×107 V/m) 2.436 2.780 12

Table 2.6: Strains in inclusion AlN(1000) and inhomogeneity InN(1000)/AlN(1000)
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Figure 2.2: A square QWR in GaAs (a) and a hexagon QWR in AlN (b). The dashed lines
show where the responses are calculated.

shapes, the induced fields inside the QWR are uniform for both models. These results can
be obtained using the analytical solution for the QWR inclusion problem [23], combined
with the Eshelby inhomogeneity method [27–29]. Furthermore, we have also used our
BEM formulation presented above for these models. In doing so, we have mutually checked
our analytical and numerical solutions.

It is observed from Tables 2.3 through 2.6 that the relative error, defined as (inclusion
solution − inhomogeneity solution)/(inhomogeneity solution), for the strain (the large z-
component γzz in the ellipse case) between the inclusion and inhomogeneity models is
generally around 10%, which is consistent with the recent prediction for the purely elastic
QWR case [24, 33]. We also note that for the elliptical QWR case, the horizontal strainγxx
(the small x-component) based on the inhomogeneity model can be much different from
that based on the inclusion model. Perhaps the most important feature is on the difference
of the electric fields (in units of 107 V/m) in the InAs/GaAs (111) system. It is observed that
the electric field difference based on the inclusion and inhomogeneity models can be more
than one order of the magnitude (Table 2.4). This special feature has not been reported in
any previous investigation and will be discussed again in the following two examples.

2.4.2 Square QWR in GaAs and hexagon QWR in AlN
The second example is for a square QWR in GaAs and a hexagonal QWR in AlN, shown
in Figure 2.2, where the induced strain and electric fields are presented along the horizontal
and diagonal dashed lines in the figure.

Shown in Figures 2.3 and 2.4 are the hydrostatic strains (γxx +γzz) along both horizontal
and diagonal lines in both InAs/GaAs (001) and InAs/GaAs (111). These results are similar
to those for the InAs/GaAs QWR with trapezoidal cross-section [24]. In general, the elastic
strain fields inside the QWR are much larger than those in the substrate and the difference in
the strain fields based on the inhomogeneity and inclusion models is apparent, particularly
within the QWR.

While there is no induced electric field in the InAs/GaAs (001) system, large electric
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Figure 2.3: Hydrostatic strains (γxx + γzz) in a square QWR InAs/GaAs (001) along the
horizontal (a) and diagonal (b) lines as defined in Figure 2.2(a).

0 4 8 12 16 20

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

horizontal

inclusion

inhomo

H
y
d
ro
s
ta
ti
c
 S
tr
a
in

x(nm)

(a)

 

0 4 8 12 16 20

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

diagonal

inclusion

inhomo

H
y
d
ro
s
ta
ti
c
 S
tr
a
in

x(nm)

(b)

 

Figure 2.4: Hydrostatic strains (γxx + γzz) in a square QWR InAs/GaAs (111) along the (a)
horizontal and (b) diagonal dashed lines shown in Figure 2.2(a).
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Figure 2.5: (a) Ex and (b) Ez along the horizontal dashed line shown in Figure 2.2(a), and
(c) Ex and (d) Ez along the diagonal dashed line of the same figure, in a square QWR
InAs/GaAs(111).

fields can be observed in QWs, QWRs, and QDs (111) systems [2, 16]. Here in Figure 2.5,
we show for the first time that the induced electric fields along the horizontal and diagonal
lines in InAs/GaAs (111) of a square QWR can be large and that the difference between
the electric fields based on the inclusion and inhomogeneity models can be significant, es-
pecially within the QWR. In other words, electric fields in the InAs/GaAs (111) orientation
should not be neglected, and should be considered using the inhomogeneity model as the
simple inclusion model could be completely wrong. Furthermore, for the induced electric
field, its magnitude both inside and outside the QWR are comparable, in contrast to the
corresponding strain field featured in Figures 2.3 and 2.4.

Figure 2.6 shows the hydrostatic strain in InN/AlN(0001) along the horizontal and in-
clined lines. Similar to the hydrostatic strain in the InAs/GaAs system, we observed that
outside the QWR, both the inclusion and inhomogeneity models predict similar results,
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Figure 2.6: Hydrostatic strains (γxx + γzz) in a hexagonal QWR InN/AlN (0001) along the
(a) horizontal and (b) inclined dashed lines shown in Figure 2.2(b).

with their magnitudes outside being also much smaller than those inside the QWRs. How-
ever, near the interface between the QWR and substrate, apparent differences can be ob-
served. Furthermore, for the hydrostatic strain inside the QWR, the inclusion model pre-
dicts a higher value than the inhomogeneity model does (about 11%). For the InN/AlN
(1000) QWR, the hydrostatic strain distribution is similar.

Figure 2.7 shows the electric field distribution along the horizontal line for both the
InN/AlN (0001) and (1000) QWRs. For orientation (0001), the only non-zero electric field
component is Ex while for (1000), it is Ez. It is observed from the figure that the inclu-
sion model predicts very close results as compared to those based on the inhomogeneity
model, particularly forEx, except for the points close to the interface where the electric field
experiences a shape change, resulting in different values based on different models.

Shown in Figures 2.8 and 2.9 are the electric field components Ex and Ez along the
inclined line shown in Figure 2.2(b) for both InN/AlN (0001) and (1000) systems. It is
noted that whereas along the horizontal, one of these field components is always zero,
along the inclined line, both Ex and Ez are in general nonzero. Again, outside the QWR,
the inclusion and inhomogeneity models predict similar results, while near the interface or
inside the QWR, their predictions differ more markedly.

2.4.3 QWRs of different polygonal shapes
In this example, we study the induced electric fields inside and outside a polygonal QWR
with n sides where n = 3,4,5,6,10, and ∞, shown in Figure 2.10, where a polygon with an
infinite number of (infinitesimal) sides is a circle. This model was used before for the cor-
responding corner singularity study [36]. Only the results from the inhomogeneity models
InAs (111)/GaAs(111), InN (0001)/AlN(0001), and InN(1000)/AlN(1000) are presented,
and the electric field components are shown only for points along the x-axis.

Figure 2.11 shows that inside and outside the QWR of InAs/GaAs(111), both electric
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Figure 2.7: (a) Ex in InN/AlN(1000) and (b) Ez in InN/AlN(0001) along the horizontal line
shown in Figure 2.2(b).
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Figure 2.8: (a) Ex and (b) Ez in InN/AlN (0001) along the inclined line shown in Fig-
ure 2.2(b).
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Figure 2.9: (a) Ex and (b) Ez in InN/AlN (1000) along the inclined line shown in Fig-
ure 2.2(b).
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Figure 2.10: The polygons with number of sides n = 3,4,5,6,10, and ∞, where a polygon
with an infinite number of sides is a circle.
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Figure 2.11: (a) Ex and (b) Ez in InAs/GaAs(111) along the x-axis for n =
3,4,5,6,10, and ∞, where a polygon with an infinite number of sides is a circle.

n Ex Ez
3 -0.0071 0.0012
4 -0.1701 1.1285
5 0.2182 -0.1546
6 0.2396 -0.1430
10 0.2613 -0.1851
∞ 0.2689 -0.1902

Table 2.7: Electric fields (×106 V/m) at the center of a polygonal InAs QWR with n sides
in GaAs(111)

field components are generally nonzero along the x-axis and that just as for the second
example, the magnitudes of these fields are comparable both inside and outside the QWR.
We also observe that the results from the regular triangle and square QWRs are completely
different from the other polygonal QWRs. This can be seen more clearly from Table 2.7
where the electric fields at the center of the polygons are listed. It is obvious that the signs
of Ex and Ez are respectively the same for both triangle and square QWRs, which, however,
have opposite signs as compared to those in other polygons. Furthermore, while the central
values of the electric fields are very small for the triangle QWR, the Ez component in the
square QWR is much larger than that of other polygons (about 50–100% larger). These
distinguished features are directly associated with the geometric shape. While the triangle
and square are very different from each other, a polygon with a number of sides n ≥ 5 is
closer to a circular shape than either a triangle or a square (Figure 2.10).

Figure 2.12 shows the electric field along the x-axis in InN/AlN(1000) and (0001). Due
to the symmetric property of the problem the only nonzero component is Ex in (1000)
orientation and Ez in (0001) orientation. It is noted that

1. there is a sharp change in the electric field at the geometric corner point (x = 10 nm);
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Figure 2.12: (a) Ex in InN/AlN(1000) and (b) Ez in InN/AlN(0001) along the x-axis for
n = 3,4,5,6,10, and ∞, where a polygon with an infinite number of sides is a circle.

n Ex in (1000) Ez in (0001)
3 -42.33 -45.74
4 -56.89 -56.89
5 -42.86 -43.00
6 -41.73 -43.96
10 -42.63 -42.76
∞ -42.66 -42.66

Table 2.8: Electric fields (×107 V/m) at the center of a polygonal InN QWR with n sides
in AlN

2. the trend of the field variation in triangle QWR is completely different from those in
other polygons; and

3. at the center of the polygons, the electric field of the square is much larger than those
in other polygons where the results are very close to each other (Table 2.8) except for
the square QWR. The difference of the electric field magnitude at the center between
square and other polygons is about 25%.

2.5 Concluding remarks
In the paper, an accurate BEM modeling is proposed for the strain and electric field analy-
sis in QWR structures. Constant elements are employed to discretize the interface between
the QWR and substrate with the integral being analytically determined using closed-form
Green’s functions for anisotropic piezoelectric solids. The elastic and piezoelectric re-
sponse at any location can be predicted based on the inclusion and inhomogeneity models.
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From our study, some important features are observed, with those for the strain field being
consistent to recent published results:

1. In the substrate and far away from the QWR, both the inclusion and inhomogeneity
models predict nearly the same strain field. In other words, the simple inclusion
model can be safely applied if one would like to have a quick estimation of the far-
field strain.

2. For points inside or close to the QWR, the strain difference between the two models
can be as high as 10% for the test structures, which can result in strong variations of
the confined electronic states.

3. While the magnitude of strain inside the QWR is much larger than that outside, the
electric fields have the same magnitudes both inside and outside the QWR.

4. While the relative difference in the electric fields based on both inclusion and inho-
mogeneity models can be large in the InAs/GaAs(111) system, that for the InN/AlN
is relatively small. In other words, for InN/AlN where the electric field is large, the
simple inclusion model could be employed for the calculation of the induced electric
field. This is particularly true as the difference in the electric field based on both
models could be small compared to the difference that arises due to the uncertainty
in the material constants used [37].

5. It is also observed that the electric fields in the QWR depend strongly on the QWR
geometry shape; the electric field in triangular and square QWRs is different from
those in the polygons made of more than 4 sides.
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Chapter 3

Exact closed-form electromagnetic
Green’s functions for graded uniaxial
multiferroic materials

3.1 Introduction
Multiferroic materials that combine a spontaneous magnetization with a ferroelectric polar-
ization are of great theoretical and practical interest [38–40]. Strong coupling between the
polarization and magnetization in multiferroic materials would allow ferroelectric data stor-
age combined with a magnetic read. The ability to tune or switch the magnetic properties
with an electric field and vice versa could lead to unexpected developments in conventional
devices such as transducers. Various models in the framework of micromechanics have
been proposed for multiferroic materials [41–48].

The Green’s function-based methods are mathematically elegant and computational
powerful [35, 49]. Green’s functions in multiferroic materials can be utilized to predict
the magnetoelectric effect and to investigate inclusion problems [41–48], to name a few.
It is observed that so far the derived Green’s functions for multiferroic materials are re-
stricted to homogeneous or piecewise homogeneous materials [45–48, 50]. The graded
spatial compositions associated with functionally graded materials (FGMs) provide ad-
ditional freedom to optimize the design and fabrication of novel structures for interface
modulation and also for exploiting other unique features of these systems [51, 52]. Very
recently, multiferroic FGMs based on piezoelectric BaTiO3 and magnetostrictive CoFe2O4,
on PbTiO3-CoFe2O4, and on BiMnO3 and Mn3O4 have been successfully fabricated using
different approaches for better dielectric and magnetic properties [53–55]. Furthermore,
an interesting theoretical analysis on the behavior of piezoelectric FGMs was also carried
out, which showed the flexibility of FGMs for modulating and adjusting the structure re-
sponse [56]. To the best of the authors’ knowledge, however, Green’s functions in FGMs
are currently limited to heat conduction [57], elastostatics [58, 59], and piezoelectricity
[60].

Therefore, in the paper, we derive three-dimensional (3D) electromagnetic Green’s
functions for a uniaxial multiferroic FGM which is exponentially graded in an arbitrary
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direction. Upon introduction of two new functions [47, 48], the set of coupled governing
partial differential equations can be decoupled into two independent inhomogeneous par-
tial differential equations. It is observed that the original problem can be reduced to the
determination of Green’s functions for two independent 3D Helmholtz equations. Explicit
expressions of the Green’s functions and their derivatives are thus derived, along with the
corresponding boundary integral equations. Numerical examples (of the Green’s functions
and electric-dipole solutions) are also presented for different exponential factors in the
FGMs, and it is found that, along the compositional gradient direction, amplitudes of the
field response in a FGM multiferroic space can be either reduced or kept in the same values
as those in the corresponding homogeneous material (for the Green’s function solutions).

3.2 Green’s functions for a functionally graded multifer-
roic material

The constitutive equations for a uniaxial multiferroic material with its unique axis along
the x3-direction can be written as [46, 50][

D1
B1

]
=
[

κ11 α11
α11 µ11

][
E1
H1

]
,

[
D2
B2

]
=
[

κ11 α11
α11 µ11

][
E2
H2

]
,

[
D3
B3

]
=
[

κ33 α33
α33 µ33

][
E3
H3

]
(3.1)

where Di and Bi (i = 1,2,3) are the electric displacement and magnetic flux components
(in the x1-, x2-, and x3-directions); Ei and Hi are the electric field and magnetic field
components;κ11 and κ33 are the two dielectric permittivity coefficients in the x1- and x3-
directions, respectively; α11 and α33 are the two magnetoelectric coefficients (in the x1-
and x3-directions); and µ11 and µ33 are the two magnetic permeability coefficients (in the
x1- and x3-directions).

For a FGM uniaxial multiferroic material with exponential variation in an arbitrary
direction, the material coefficients in Eq. (3.1) can be described by (assuming a uniform
variation in space for all the material coefficients [57–60].)[

κii(x) αii(x) µii(x)
]
=
[

κ0
ii α0

ii µ0
ii
]

exp(2β1x1 +2β2x2 +2β3x3) i = 1,3 (3.2)

where β1, β2, and β3 are three exponential factors characterizing the degree of material
gradient in the x1-,x2-, and x3-directions, respectively. The superscript “0” indicates the
coordinate-independent factor in the material coefficient, and the factor of 2 in the ex-
ponential is introduced to simplify the derivation of Green’s function expressions. It is
obvious that β1 = β2 = β3 = 0 corresponds to the homogeneous multiferroic material case
investigated previously [35, 46–50]. We further point out that the special exponential vari-
ation is assumed so that exact-closed form Green’s functions can be derived, and that the
assumed exponential function can be used to piecewise approximate any smooth variation
of the FGM in a small space domain.

The electric and magnetic fields are related to the electric potential φ and magnetic
potential ψ through the following 2×1 column matrix relation[

Ei
Hi

]
=−

[
φ,i
ψ,i

]
(3.3)
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where the subscript comma “,” followed by the index i (i = 1,2,3) denotes the derivative
of the potential with respect to the coordinate xi.

For the FGM uniaxial multiferroic free-space, we assume, without loss of generality,
that there is a point electric charge P and a point magnetic charge M both located at the
origin (See section 3.4.1 for the case where the source is not at the origin). Thus the electric
displacement Di and magnetic flux Bi satisfy the following equations [47, 48]

∂D1

∂x1
+

∂D2

∂x2
+

∂D3

∂x3
= Pδ (x1)δ (x2)δ (x3)

∂B1

∂x1
+

∂B2

∂x2
+

∂B3

∂x3
= Mδ (x1)δ (x2)δ (x3)

(3.4)

where δ is the Dirac delta function.
Substituting Eqs. (3.2) and (3.3) into Eq. (3.1), and then the results into Eq. (3.4), we

arrive at the following set of inhomogeneous partial differential equations for φ and ψ:[
κ0

11 α0
11

α0
11 µ0

11

]( ∂ 2

∂x2
1
+ ∂ 2

∂x2
2

)
φ(

∂ 2

∂x2
1
+ ∂ 2

∂x2
2

)
ψ

+

[
κ0

33 α0
33

α0
33 µ0

33

] ∂ 2φ

∂x2
3

∂ 2ψ

∂x2
3


+ 2

[
κ0

11 α0
11

α0
11 µ0

11

][
β1

∂φ

∂x1
+β2

∂φ

∂x2

β1
∂ψ

∂x1
+β2

∂ψ

∂x2

]
+2β3

[
κ0

33 α0
33

α0
33 µ0

33

][
∂φ

∂x3
∂ψ

∂x3

]
=

−
[

P
M

]
δ (x1)δ (x2)δ (x3) (3.5)

where the well-known properties of the delta function have been employed.
In order to solve the above set of coupled differential equations, we first consider the

following eigenvalue problem [47, 48]([
κ0

11 α0
11

α0
11 µ0

11

]
−λ

[
κ0

33 α0
33

α0
33 µ0

33

])
v =

[
0
0

]
(3.6)

The two eigenvalues λ1 and λ2 are given by

λ1 =
µ0

33κ0
11 + µ0

11κ0
33−2α0

11α0
33

2[µ0
33κ0

33− (α0
33)2]

+

√
(µ0

11κ0
33−µ0

33κ0
11)2 +4(α0

11µ0
33−α0

33µ0
11)(α

0
11κ0

33−α0
33κ0

11)

2[µ0
33κ0

33− (α0
33)2]

λ2 =
µ0

33κ0
11 + µ0

11κ0
33−2α0

11α0
33

2[µ0
33κ0

33− (α0
33)2]

−

√
(µ0

11κ0
33−µ0

33κ0
11)2 +4(α0

11µ0
33−α0

33µ0
11)(α

0
11κ0

33−α0
33κ0

11)

2[µ0
33κ0

33− (α0
33)2]

(3.7)

and the corresponding eigenvectors associated with λ1 and λ2 are

v1 =
[
−α0

11 +λ1α0
33

κ0
11−λ1κ0

33

]
, v2 =

[
−α0

11 +λ2α0
33

κ0
11−λ2κ0

33

]
(3.8)
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Since the two matrices on the left-hand side of Eq. (3.6) are real and symmetric, it can be
easily verified that the orthogonality conditions[

vT
1

vT
2

][
κ0

33 α0
33

α0
33 µ0

33

][
v1 v2

]
=
[

δ1 0
0 δ2

]
[

vT
1

vT
2

][
κ0

11 α0
11

α0
11 µ0

11

][
v1 v2

]
=
[

λ1δ1 0
0 λ2δ2

] (3.9)

are satified. In Eq. (3.9), the superscript T denotes matrix transpose, and

δ1 = α
02
11 κ

0
33 +κ

02
11 µ

0
33−2α

0
11α

0
33κ

0
11 +(µ

0
33κ

0
33−α

02
33 )(λ 2

1 κ
0
33−2λ1κ

0
11)

δ2 = α
02
11 κ

0
33 +κ

02
11 µ

0
33−2α

0
11α

0
33κ

0
11 +(µ

0
33κ

0
33−α

02
33 )(λ 2

2 κ
0
33−2λ2κ

0
11)

(3.10)

We now introduce two new functions f and g, which are related to φ and ψ through[
φ

ψ

]
= Φ

[
f
g

]
(3.11)

where Φ = [v1 v2].
In view of Eqs. (3.5), (3.9) and (3.11), the two new functions f and g are required to

satisfy the following two independent, inhomogeneous, and partial differential equations(
∂ 2

∂x2
1
+

∂ 2

∂x2
2
+

1
λ1

∂ 2

∂x2
3
+2β1

∂

∂x1
+2β2

∂

∂x2
+

2β3

λ1

∂

∂x3

)
f

=−
(−α0

11 +λ1α0
33)P+(κ0

11−λ1κ0
33)M

δ1λ1
δ (x1)δ (x2)δ (x3) (3.12)

(
∂ 2

∂x2
1
+

∂ 2

∂x2
2
+

1
λ2

∂ 2

∂x2
3
+2β1

∂

∂x1
+2β2

∂

∂x2
+

2β3

λ2

∂

∂x3

)
g

=−
(−α0

11 +λ2α0
33)P+(κ0

11−λ2κ0
33)M

δ2λ2
δ (x1)δ (x2)δ (x3) (3.13)

Equations (3.12) and (3.13) can be equivalently expressed as(
∂ 2

∂x2
1
+

∂ 2

∂x2
2
+

∂ 2

∂ (
√

λ1x3)2
+2β1

∂

∂x1
+2β2

∂

∂x2
+

2β3√
λ1

∂

∂ (
√

λ1x3)

)
f =

−4πK1δ (x1)δ (x2)δ (
√

λ1x3) (3.14)

(
∂ 2

∂x2
1
+

∂ 2

∂x2
2
+

∂ 2

∂ (
√

λ2x3)2
+2β1

∂

∂x1
+2β2

∂

∂x2
+

2β3√
λ2

∂

∂ (
√

λ2x3)

)
g =

−4πK2δ (x1)δ (x2)δ (
√

λ2x3) (3.15)
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where the two constants K1 and K2 are defined as

K1 =
(−α0

11 +λ1α0
33)P+(κ0

11−λ1κ0
33)M

4πδ1
√

λ1

K2 =
(−α0

11 +λ2α0
33)P+(κ0

11−λ2κ0
33)M

4πδ2
√

λ2

(3.16)

Next we introduce another two new functions F and G defined by

f = exp(−β1x1−β2x2−β3x3)F g = exp(−β1x1−β2x2−β3x3)G (3.17)

Consequently, Eqs. (3.14) and (3.15) can now be changed into the following two indepen-
dent inhomogeneous 3D Helmholtz equations(

∂ 2

∂x2
1
+

∂ 2

∂x2
2
+

∂ 2

∂ (
√

λ1x3)2
−η

2
1

)
F =−4πK1δ (x1)δ (x2)δ (

√
λ1x3) (3.18)

(
∂ 2

∂x2
1
+

∂ 2

∂x2
2
+

∂ 2

∂ (
√

λ2x3)2
−η

2
2

)
G =−4πK2δ (x1)δ (x2)δ (

√
λ2x3) (3.19)

where

η1 =

√
β 2

1 +β 2
2 +

β 2
3

λ1
η2 =

√
β 2

1 +β 2
2 +

β 2
3

λ2
(3.20)

The solutions to Eqs. (3.18) and (3.19) can be expediently given by

F = K1
exp(−η1r1)

r1
G = K2

exp(−η2r2)
r2

(3.21)

where r1 =
√

x2
1 + x2

2 +λ1x2
3 and r2 =

√
x2

1 + x2
2 +λ2x2

3.
In view of Eq. (3.17), the expressions of the two functions f and g are given by

f = K1
exp(−β1x1−β2x2−β3x3−η1r1)

r1

g = K2
exp(−β1x1−β2x2−β3x3−η2r2)

r2

(3.22)

It follows from Eq. (3.11) that the electric and magnetic potentials can be now obtained as[
φ

ψ

]
= Φ

[
K1 exp(−β1x1−β2x2−β3x3−η1r1)/r1
K2 exp(−β1x1−β2x2−β3x3−η2r2)/r2

]
(3.23)
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Based on Eq. (3.23), the multiferroic Green’s functions Gαβ are then found to be

4πGφP =
(α0

11−λ1α0
33)

2

δ1
√

λ1

exp(−β1x1−β2x2−β3x3−η1r1)
r1

+
(α0

11−λ2α0
33)

2

δ2
√

λ2

exp(−β1x1−β2x2−β3x3−η2r2)
r2

(3.24a)

4πGφM = 4πGψP

=
(λ1α0

33−α0
11)(κ

0
11−λ1κ0

33)
δ1
√

λ1

exp(−β1x1−β2x2−β3x3−η1r1)
r1

+
(λ2α0

33−α0
11)(κ

0
11−λ2κ0

33)
δ2
√

λ2

exp(−β1x1−β2x2−β3x3−η2r2)
r2

(3.24b)

4πGψM =
(κ0

11−λ1κ0
33)

2

δ1
√

λ1

exp(−β1x1−β2x2−β3x3−η1r1)
r1

+
(κ0

11−λ2κ0
33)

2

δ2
√

λ2

exp(−β1x1−β2x2−β3x3−η2r2)
r2

(3.24c)

In Eqs. (3.24), the definitions of the Green’s functions are: GφP(xi) is the electric potential
φ at xi due to a unit point electric charge (P = 1) at xi = 0. GφM(xi) is the electric potential
φ at xi due to a unit point magnetic charge (M = 1) at xi = 0. GψP(xi) is the magnetic
potential ψ at xi due to a unit point electric charge (P = 1) at xi = 0, and GψM(xi) is the
magnetic potential ψ at xi due to a unit point magnetic charge (M = 1) at xi = 0. If one
is interested in the electric and magnetic fields or the electric displacement and magnetic
flux components induced by the point source, the derivatives of these Green’s functions are
essential as in the boundary integral equation formulation [57]. These derivatives of the
Green’s functions and the corresponding boundary integral equation formulation for the
FGM multiferroic are presented, respectively, in sections 3.4.1 and 3.4.2.

Some interesting features can be observed from the Green’s function expression in
Eqs. (3.24).

1. When β1 = β2 = β3 = 0, Eqs. (3.24) reduce to the Green’s functions for a homoge-
neous multiferroic material [46–48, 50], as expected.

2. The magnitudes of the FGM multiferroic Green’s functions Gαβ decay to zero faster
than their counterparts for the homogeneous multiferroic material when the field

point is away from the origin (r =
√

x2
1 + x2

2 + x2
3→∞). This is due to the appearance

of the decaying exponential terms in these FGM Green’s functions.

3. Just like the Green’s functions in the corresponding homogeneous space, the FGM
Green’s functions in Eqs. (3.24) are also symmetric in their indices. In other words,
the electric potential at xi due to a unit point magnetic charge at the origin equals the
magnetic potential at xi due to a unit point electric charge at the origin. However,
unlike the homogeneous Green’s functions, the source and field points in the FGM
Green’s functions are asymmetric. Namely, the source and fields points cannot be
exchanged.
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4. Although the exact-closed form Green’s functions are based on the special expo-
nential variation, any smooth variation of the FGM in a small space domain can be
piecewise approximated by the exponential function. In other words, the application
of the present Green’s function is not limited to the exponential variation, particularly
when it is implemented into the corresponding boundary integral formulation. (See
section 3.4.2.)

We illustrate in Figures 3.1–3.4 the distribution of the electromagnetic Green’s func-
tions Gαβ along the x3-axis for different gradient parameter β3(=−10,−3,−1,0,1,3,10 m−1)
with β1 = β2 = 0. This situation implies that the material is graded in the uniaxial x3-
direction [53–56]. The coordinate-independent factors in the material coefficients are cho-
sen to be (for a typical multiferroic composite) [46, 50]

α
0
11 = 5×10−12 N · s/V ·C α

0
33 = 3×10−12 N · s/V ·C

κ
0
11 = 8×10−11 C2/(N ·m2) κ

0
33 = 9.3×10−11 C2/(N ·m2)

µ
0
11 = 5.9×10−4 N · s2/C2

µ
0
33 = 1.57×10−4 N · s2/C2

As expected, the figures show that the gradient parameter β3 has a significant influence on
the distribution of the Green’s functions along the x3-axis. In particular, the magnitudes of
these Green’s functions decrease with increasing magnitude of β3. It is striking that for the
special case where β1 = β2 = 0 and x1 = x2 = 0, the distribution of the Green’s functions in
Eq. (3.24) along the negative x3-axis is the same as that in the corresponding homogeneous
multiferroic material (β1 = β2 = β3 = 0), independent of the positive values of β3. On
the other hand, the distribution of the Green’s functions in Eq. (3.24) along the positive
x3-axis is also the same as that in the corresponding homogeneous multiferroic material,
independent of the negative values of β3. These interesting behaviors of field responses
can be also observed along the x1-axis for positive and negative β1 (with β2 = β3 = 0), and
along the x2-axis for positive and negative β2 (with β1 = β3 = 0).

Finally, as an interesting application of the derived Green’s function solutions, we study
the electric and magnetic potentials induced by an electric dipole at the origin and along the
uniaxial x3-direction with the electric moment (or dipole moment) p. This is very important
because charge pairs of opposite sign are the model for polarized and magnetized atoms
and molecules [61–63]. By employing the Green’s function solutions, Eqs. (3.24), and
making use of the limiting process, the expressions of the electric and magnetic potentials
induced by the electric dipole of moment p can be given by

φ =
p
√

λ1(λ1α0
33−α0

11)
2e−η1r1−∑

3
m=1 βmxm

4πδ1

(
x3

r3
1

+
η1x3

r2
1
− β3

λ1r1

)
+

p
√

λ2(λ2α0
33−α0

11)
2e−η2r2−∑

3
m=1 βmxm

4πδ2

(
x3

r3
2

+
η2x3

r2
2
− β3

λ2r2

)
ψ =

p
√

λ1(κ0
11−λ1κ0

33)(λ1α0
33−α0

11)e
−η1r1−∑

3
m=1 βmxm

4πδ1

(
x3

r3
1

+
η1x3

r2
1
− β3

λ1r1

)
+

p
√

λ2(κ0
11−λ2κ0

33)(λ2α0
33−α0

11)e
−η2r2−∑

3
m=1 βmxm

4πδ2

(
x3

r3
2

+
η2x3

r2
2
− β3

λ2r2

)
(3.25)
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Figure 3.1: Distribution of the electromagnetic Green’s function GφP along x3-axis for
different gradient parameter β3(=−10,−3,−1,0,1,3,10 m−1) with β1 = β2 = 0.
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Figure 3.2: Distribution of the electromagnetic Green’s function GφM along x3-axis for
different gradient parameter β3(=−10,−3,−1,0,1,3,10 m−1) with β1 = β2 = 0.
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Figure 3.3: Distribution of the electromagnetic Green’s function GψP along x3-axis for
different gradient parameter β3(=−10,−3,−1,0,1,3,10 m−1) with β1 = β2 = 0.
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Figure 3.4: Distribution of the electromagnetic Green’s function GψM along x3-axis for
different gradient parameter β3(=−10,−3,−1,0,1,3,10 m−1) with β1 = β2 = 0.
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Figure 3.5: Distribution of the magnetic potential along x3-axis induced by a unit electric
dipole (p = 1) at origin and along the uniaxial x3-direction for different gradient parameter
β3(=−3,−1,0,1,3 m−1) with β1 = β2 = 0.

It is observed from Eq. (3.25) that an electric dipole can also induce the magnetic field due
to the magnetoelectric effect in multiferroic materials. To see this fact more clearly, we
illustrate in Figure 3.5 the distribution of the magnetic potential along the x3-axis induced
by a unit electric dipole (p = 1) at the origin and along the uniaxial x3-direction for different
gradient parameter β3(= −3,−1,0,1,3 m−1) with β1 = β2 = 0. Comparing Figure 3.5 to
the Green’s function GψM in Figure 3.4, it is interesting to observe that the distribution of
the magnetic potential along the whole x3-axis induced by the unit electric dipole always
depends on the value of the gradient parameter β3. It is further noticed from Figure 3.5 that

1. when β3x3 > 0, the magnitude of the induced magnetic potential at any point is
smaller than the corresponding one for the homogeneous material (β3 = 0) at the
same point, and

2. conversely when β3x3 < 0, the magnitude of the induced magnetic potential at any
point is larger than the corresponding one for homogeneous material (β3 = 0) at the
same point.
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3.3 Conclusions
In this chapter, the 3D exact closed form electromagnetic Green’s functions for a FGM uni-
axial multiferroic space are derived by assuming the material to be exponentially graded
in an arbitrary direction. The explicit expressions of the Green’s functions are given in
Eqs. (3.24), with their derivatives listed in Eqs. (3.26)–(3.28) of section 3.4.1. The corre-
sponding boundary integral equations are also presented in section 3.4.2. Sharply different
from the complicated Green’s function expression in FGM transversely isotropic piezo-
electric materials [60], the Green’s functions in the FGM multiferroic space are expressed
in terms of elementary functions only. Numerical examples of the Green’s functions and
electric-dipole solutions have been presented to demonstrate the possibility of tailoring the
material behavior. In particular, it is shown that along the gradient orientation, amplitudes
of the field response in a FGM multiferroic space can be modulated using different func-
tional gradient factors, resulting in either reduced amplitude of the response, or the same
values as those in the corresponding homogeneous materials (for the Green’s functions).
The derived Green’s functions can be further employed to address inclusion problems in
FGM multiferroic materials and can be implemented into the corresponding boundary el-
ement formulation to attack more complicated boundary value problems associated with
FGM multiferroic materials. We point out that although the exact closed-form Green’s
functions are based on the special exponential variation, any smooth variation of the FGM
can be treated within the boundary integral equation in a piecewise thin-layer manner [60].

3.4 Appendices

3.4.1 Derivatives of the Green’s functions
Derivatives of the Green’s functions are listed below. These field quantities are required to
find the electric and magnetic fields, and electric displacements and magnetic fluxes. They
are also required in the FGM boundary integral formulation as presented in section 3.4.2.

4π
∂GφP

∂xi
=−

2

∑
k=1

(α0
11−λkα0

33)
2

δk
√

λk

(
βi

rk
+

ηkxi

r2
k

+
xi

r3
k

)
e−ηkrk−∑

3
m=1 βmxm (3.26)

4π
∂GφM

∂xi
= 4π

∂GψP

∂xi
=

2

∑
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(α0
11−λkα0

33)(κ
0
11−λkκ0

33)

δk
√

λk

(
βi

rk
+

ηkxi

r2
k

+
xi

r3
k

)
e−ηkrk−∑

3
m=1 βmxm (3.27)

4π
∂GψM

∂xi
=−

2

∑
k=1

(κ0
11−λkκ0

33)
2

δk
√

λk

(
βi

rk
+

ηkxi

r2
k

+
xi

r3
k

)
e−ηkrk−∑

3
m=1 βmxm (3.28)

where i = 1,2,3 and, of course, ∑
3
m=1 βmxm = β1x1 + β2x2 + β3x3. We remark that in de-

riving the potential Green’s functions and their derivatives, we have assumed that the point
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charge is located at the origin. For applications of these Green’s functions to a bound-
ary integral equation formulation as described in section 3.4.2, the source point has to be
arbitrary.

Let us assume that the point charge is located at an arbitrary source point xs =(xs
1,x

s
2,x

s
3),

and the field (or observation) point is at x f = (x f
1 ,x f

2 ,x f
3). We then can make the following

coordinate translation,
x̃i = xs

i − xs
i (3.29)

so that the point charge is located at the origin of the new coordinate system (x̃1, x̃2, x̃3).
Therefore, all the Green’s functions developed in this paper hold in the new coordinate
system; however, the material coefficients vary exponentially in the new coordinates as
follows.

[κii(x̃) αii(x̃) µii(x̃)] = [κ̃0
ii α̃

0
ii µ̃

0
ii]exp

(
2

3

∑
i=1

βmx̃m

)
(3.30)

where the three material constants κ̃0
ii , α̃0

ii , andµ̃0
ii are given by

κ̃
0
ii = exp

(
2

3

∑
i=1

βmxs
m

)
κ

0
ii

α̃
0
ii = exp

(
2

3

∑
i=1

βmxs
m

)
α

0
ii

µ̃
0
ii = exp

(
2

3

∑
i=1

βmxs
m

)
µ

0
ii

(3.31)

with κ0
ii , α0

ii , and µ0
ii being the material coefficients at the origin of the old coordinate system

(x1,x2,x3).

3.4.2 Boundary integral equation formulation for an FGM multifer-
roic

For a uniaxial multiferroic material satisfying the constitutive relation (3.1), it can be easily
shown that the following reciprocal property holds [64]

D(1)
i E(2)

i +B(1)
i H(2)

i = D(2)
i E(1)

i +B(2)
i H(1)

i (3.32)

where the superscripts “(1)” and “(2)” denote two independent systems of the field quan-
tities under different loadings, and the dummy index i takes the summation from 1 to 3.
We emphasize that Eq. (3.32) holds for any spatial variation of the multiferroic material
properties. Therefore, it also holds for the exponential variation as described by Eq. (3.2).

Integrating both sides of Eq. (3.32) with respect to the problem domain and making use
of the divergence theorem, we obtain the following integral relation∫

S
[D(1)

i φ
(2) +B(1)

i ψ
(2)]dS−

∫
V
[D(1)

i,i φ
(2) +B(1)

i,i ψ
(2)]dV =∫

S
[D(2)

i φ
(1) +B(2)

i ψ
(1)]dS−

∫
V
[D(2)

i,i φ
(1) +B(2)

i,i ψ
(1)]dV (3.33)
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where V is the problem domain and S is the boundary of domain V ; the subscript “,i”
denotes the derivative with respect to the coordinate xi; and the subscript n means the
normal component of the field vector. In other words, for example, Dn=Dini with ni being
the outward normal at the boundary point.

We assume now that system (2) corresponds to the real boundary value problem in
a FGM multiferroic domain and (1) to the corresponding Green’s function solution with
P = 1 and M = 0 in Eq. (3.4). It can then be shown that the following integral equation
expression holds for the electric potential φ at any point xs within the problem domain

φ(xs) =
∫

S
[DP

n (x f ;xs)φ(x f )+BP
n (x f ;xs)ψ(2)(xs)]dS

−
∫

S
[GφP(x f ;xs)Dn(x f )+GψP(x f ;xs)Bn(x f )]dS (3.34)

where GφP and GψP are the (electric and magnetic) potential Green’s functions at x f (due
to a point electric charge of unit amplitude at xs) given in Eqs. (3.24), and Dp

n and Bp
n are

the normal components of the electric displacement and magnetic flux Green’s functions at
x f (due to a point electric charge of unit amplitude at xs), defined as

DP
n (x f ;xs) = DP

i (x f ;xs)ni(x f )

BP
n (x f ;xs) = BP

i (x f ;xs)ni(x f )
(3.35)

where ni(xf) is the outward normal at the boundary point x f , and and are related to the
potential Green’s functions through the following relations (for i = 1,2,3; no summation
on repeated index i):[

DP
n (x f ;xs)

BP
n (x f ;xs)

]
=−

[
κii(x f −xs) αii(x f −xs)
αii(x f −xs) µii(x f −xs)

][
∂GφP(x f ;xs)/∂x f

i
∂GψP(x f ;xs)/∂x f

i

]
(3.36)

It is noted that the multiferroic material property matrix for i = 2 is the same as that for
i = 1 since the material is uniaxial. In Eq. (3.36), we have also defined that xf = (x f

1 ,x f
2 ,x f

3).
We point out that in deriving Eq. (3.34), the electric and magnetic charges within the

problem domain are assumed to be zero. Should one of them or both of them are nonzero,
the particular solution method [65] or dual reciprocity method [34] can be easily applied to
take care of the contribution from these body charges.

Similarly, if we let system (1) be the Green’s function solution with P = 0 and M = 1
in Eq. (3.4), then we arrive at the integral equation expression for the magnetic potential ψ

at any point xs within the problem domain

ψ(xs) =
∫

S
[DM

n (x f ;xs)φ(x f )+BM
n (x f ;xs)ψ(2)(xs)]dS

−
∫

S
[GφM(x f ;xs)Dn(x f )+GψM(x f ;xs)Bn(x f )]dS (3.37)

where the definitions for the involved Green’s functions are similar to those in Eq. (3.34),
except for the fact that the sources are different, due to a point electric charge in Eq. (3.34)
and a point magnetic charge in Eq. (3.37).
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Let the source point xs approach a point on the boundary of the problem domain, then
Eqs. (3.34) and (3.37) form a pair of boundary integral equations from which the unknown
boundary values for φ , ψ , Dn and Bn can be solved. Once these boundary values are solved,
Eqs. (3.34) and (3.37) can be utilized to find the field quantities within the problem domain
[64].
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Chapter 4

Anisotropic elasticity of multilayered
crystals deformed by a biperiodic
network of misfit dislocations

4.1 Introduction
The exploration of dissimilar semiconductor heterostructures that are far beyond the lim-
its of typical pseudomorphic (or coherent) epitaxy is being considered in order to provide
greater functionality and configuration of highly integrated electronic and optoelectronic
microsystems [66, 67]. One structural approach is the bonding [68] of mismatched semi-
conductors such as Si and GaAs that require structural defects to accommodate the strain
at the interfaces.

Multilayered structures made of ultrathin lamellae exhibit excellent mechanical prop-
erties, such as higher yield strength, higher ductility and toughness, and creep resistance
[69–72]. Periodic arrays of defects, such as dislocations, have been observed along the
interfaces, which can enhance the macroscopic properties of the composite material [72].
Periodic boundary conditions are ubiquitous in describing crystalline states theoretically
and computationally [73–76], and in this paper we develop a theoretical framework that
accounts for the elastic properties of observed periodic dislocation arrays in multilayered
structures.

The elastic fields for a multilayered composite containing one periodic (or biperiodic)
array of interfacial misfit dislocations have been investigated by using Fourier or double
Fourier series expansion methods [3, 77–81]. However, this method is limited and time
consuming as it requires the inversion of a 6N× 6N matrix for a laminated medium con-
taining N interfaces. This is especially problematic when N is very large (say N equals
100, 1000, or 10,000), not to mention that the inversion of the 6N×6N matrix is only for
one term in the Fourier or double Fourier series. Therefore, the cost of complete solu-
tions by taking sufficiently large number of the Fourier or double Fourier series would be
formidable. Due to the computational demands, previous calculations have been restricted
to treating the elastic fields of isotropic or anisotropic two-layer systems deformed by a
biperiodic network of misfit dislocations [78–80]. Even for the simpler two-dimensional
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problem of periodic misfit dislocations, only the elastic field for layered structures contain-
ing a few layers has been calculated [3, 81]. Based on published reports, we concluded that
the elasticity associated with a multilayered crystal system containing a biperiodic array of
interfacial misfit dislocations is still far from complete.

In this research we propose an efficient method based on the Stroh formalism [35, 82,
83] and transfer matrix [83–85] techniques to investigate the displacement and stress fields
associated with a biperiodic, hexagonal-based misfit dislocation network located along one
planar interface in an anisotropic and multilayered crystal composite. It will be found that
by utilizing the present approach, we can address a multilayered crystal composed of an
arbitrary number of anisotropic (or isotropic) elastic layers.

4.2 Specification of the problem
We consider the deformation of a multilayered structure composed of a stack of (N−1) thin
bonded anisotropic elastic layers, sandwiched between two semi-infinite anisotropic media
denoted 1 and N + 1, as shown in Figure 4.1. A Cartesian coordinate system (x1,x2,x3)
is established in such a way that the bottom interface is at x3 = 0 and the top interface
is at x3 = H, where H is the total thickness of the (N− 1) thin anisotropic elastic layers.
The homogeneous and anisotropic elastic thin layer k (2≤ k ≤ N) is bounded by its lower
interface at x3 = zk−1 and upper interface at x3 = zk with its thickness hk = zk− zk−1, and
the layers are numbered sequentially starting at 2 from the bottom thin layer. Apparently
zN = H = ∑

N
k=2 hk. A biperiodic, hexagonal misfit dislocation network that accommodates

a lattice misfit between layer n and layer n+1 lies on the interface x3 = zn. The following
boundary conditions are assumed: (i) except for the interface at x3 = zn between layer n
and layer n + 1, perfect bonding conditions exist between any two adjacent elastic media;
(ii) continuity condition of tractions across the interface x3 = zn; (iii) linear variations of
the relative interface displacement field across the interface x3 = zn inside each biperiodic
pattern of misfit dislocations [78, 80]. The multilayered structure discussed in this paper is
general in the sense that if we let the elastic constants of the bottom (or top) semi-infinite
medium be very small, the multilayered system is then built with a package of (N−1) thin
bonded layers with a traction-free surface at x3 = 0 (or x3 = H), bounded by a semi-infinite
medium. Furthermore if we let the elastic constants of both the two semi-infinite media
be very small, the multilayered system is then made of a package of (N− 1) thin bonded
layers with two traction-free surfaces at x3 = 0 and x3 = zN .

The displacement jumps across the interface x3 = zn can be expanded into a biperiodic
Fourier series as [78, 80][

u+
k −u−k

]
x3=zn

= ∆
(G=0)
k + ∑

G6=0
∆

(G)
K e2πi(G1x1+G2x2) (4.1)

which describes a function depending linearly on x1 and x2 inside the domain considered.
In Eq. (4.1), G is a reciprocal vector of the 2D lattice defined by the two periodic vectors a
and c. If n and m are integers, then G = na∗+ mc∗ in terms of the base vectors [79]. The
components of G with respect to the Cartesian coordinate system are (G1,G2,0). (It should
be mentioned for clarity that we employ a different coordinate system than that adopted in
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Top semi-infinite anisotropic medium N+1 

h2 

hn 

hn+1 

hN 

x1 

x3 

z1=0 

z2 

zn-1 

zn 

zn+1 

zN-1 

zN=H 

Biperiodic hexagonal misfit 

dislocations network 

Figure 4.1: Cross section of a multilayered system with N interfaces and N +1 anisotropic
elastic media. A biperiodic, hexagonal, misfit dislocation network that accommodates a
misfit dislocation between layer n and layer n + 1 lies on the interface x3 = zn = of the
multilayered structure.
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Refs. 78–80.) The specific expressions of the coefficients ∆
(G)
K have been given in other

work [78, 80]. In addition we can further take ∆
(G=0)
k = 0 to enforce that the displacements

are continuous at x1 = x2 = 0, x3 = zn.

4.3 Stroh formalism for biperiodic problems
In this section we first derive the expressions of displacement and stress fields in any ho-
mogeneous and anisotropic elastic layer by invoking the established Stroh formalism.

The linear constitutive equations, strain-displacement equations and equilibrium equa-
tions in the absence of body force can be expressed as [35]

σi j = ci jklεi j (4.2a)

εi j =
1
2
(ui, j +u j,i) (4.2b)

σi j, j = 0 (4.2c)

where σi j, εi j and ui are, respectively, the stress, strain and displacement; ci jkl are the elastic
moduli.

For a certain nonzero G, we seek the solution of the displacement vector in the form

u =

u1
u2
u3

= ei(k1x1+k2x2+px3)

a1
a2
a3

 (4.3)

where p and ai (i = 1,2,3) are unknowns, and

k1 = 2πG1 k2 = 2πG2 (G2
1 +G2

2 6= 0) (4.4)

Substitution of Eq. (4.3) into the strain-displacement relation Eq. (4.2b), and subsequently
into the constitutive relation Eq. (4.2a) yields the traction vector (at x3 = constant) as

t =

σ13
σ23
σ33

= iei(k1x1+k2x2+px3)

b1
b2
b3

 (4.5)

If we introduce two vectors

a =
[
a1 a2 a3

]T b =
[
b1 b2 b3

]T (4.6)

then it is found that the vector b is related to vector a through

b = (RT + pT)a =−1
p
(Q+ pR)a (4.7)
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where the superscript T denotes matrix transpose, and Q, T, R are three 3×3 real matrices
defined by

Q = QT

=

 k2
1c11+2k1k2c16+k2

2c66 k2
1c16+k1k2(c12+c66)+k2

2c26 k2
1c15+k1k2(c14+c56)+k2

2c46
k2

1c16+k1k2(c12+c66)+k2
2c26 k2

1c66+2k1k2c26+k2
2c22 k2

1c56+k1k2(c25+c46)+k2
2c24

k2
1c15+k1k2(c14+c56)+k2

2c46 k2
1c56+k1k2(c25+c46)+k2

2c24 k2
1c55+2k1k2c45+k2

2c44


T = TT

=

c55 c45 c35
c45 c44 c34
c35 c34 c33


R =

k1c15 + k2c56 k1c14 + k2c46 k1c13 + k2c36
k1c56+k2c25 k1c46+k2c24 k1c36+k2c23
k1c55 + k2c45 k1c45 + k2c44 k1c35 + k2c34


(4.8)

where the standard contracted notations cαβ for the elastic moduli ci jkl have been adopted.
In addition, the in-plane stresses can be expressed asσ11
σ22
σ12

= iei(k1x1+k2x2+px3)×

k1c11 + k2c16 + pc15 k1c16 + k2c12 + pc14 k1c15 + k2c14 + pc13
k1c12 + k2c26 + pc25 k1c26 + k2c22 + pc24 k1c25 + k2c24 + pc23
k1c16 + k2c66 + pc56 k1c66 + k2c26 + pc46 k1c56 + k2c46 + pc36

a1
a2
a3

 (4.9)

The stress components should satisfy the equilibrium equations Eq. (4.2c), which in terms
of the vector a, yields the following eigenequation:{

Q+ p(R+RT )+ p2T
}

a = 0 (4.10)

It is observed that Eq. (4.10), derived for the biperiodic problem, is identical in structure to
the Stroh formalism in terms of the 2D Fourier transform for three-dimensional (3D) prob-
lems [35, 82–85]. This agreement is somewhat expected given that the Fourier transform
is a generalization of the Fourier series in the limit as the period of the Fourier series ap-
proaches infinity. With aid of Eq. (4.7), Eq. (4.10) can be recast into the following standard
eigenvalue problem

N
[

a
b

]
= p

[
a
b

]
(4.11)

where

N =
[
−T−1RT T−1

−Q+RT−1RT −RT−1

]
(4.12)

We remark that, for any material anisotropy, expression of the material matrix N is explicit.

65



For example, when the material is orthotropic, the explicit expression of N is

N =


0 0 −k1 1/c55 0 0
0 0 −k2 0 1/c44 0

−k1c13/c33 −k2c23/c33 0 0 0 1/c33
−k2

1(c11−c2
13/c33)−k2

2c66 −k1k2(c12+c66−c13c23/c33) 0 0 0 −k1c13/c33
−k1k2(c12+c66−c13c23/c33) −k2

1c66−k2
2(c22−c2

23/c33) 0 0 0 −k2c23/c33
0 0 0 −k1 −k2 0


(4.13)

Furthermore, if the material is isotropic, then N is reduced to

N =



0 0 −k1
2

c11−c12
0 0

0 0 −k2 0 2
c11−c12

0
− k1c12

c11
− k2c12

c11
0 0 0 1

c11

−k2
1

c2
11−c2

12
c11
− k2

2
c11−c12

2 −k1k2
c2

11+c11c12−2c2
12

2c11
0 0 0 − k1c12

c11

−k1k2
c2

11+c11c12−2c2
12

2c11
−k2

1
c11−c12

2 − k2
2

c2
11−c2

12
c11

0 0 0 − k2c12
c11

0 0 0 −k1 −k2 0


(4.14)

where c11 = [2µ(1−ν)]/(1−2ν) and c12 = (2µν)/(1−2ν) with µ being the shear mod-
ulus and ν the Poisson’s ratio.

Depending on the given material property (e.g., isotropic material), the six eigenvalues
of Eq. (4.11) may not be distinct. Should repeated roots occur, a slight change in the
material constants would result in distinct roots with negligible errors [64, 85]. In doing
so, the following simple solution structure can still be applied. Let us assume that the
first three eigenvalues of Eq. (4.11) have positive imaginary parts, and the remaining three
eigenvalues are conjugate to the first three, i.e., pi+3 = p̄i, (i = 1,2,3). We distinguish
the corresponding six eigenvectors by attaching a subscript to a and b. Then the general
solutions for the displacement and traction vectors (of the x3-dependent factor) are[

u
−it

]
=
[

A Ā
B B̄

][
〈eipα x3〉 0

0 〈eip̄α x3〉

][
K1
K2

]
(4.15)

where K1 and K2 are two constant vectors to be determined, and

A =
[
a1 a2 a3

]
B =

[
b1 b2 b3

]
〈eipα x3〉= diag

[
eip1x3 eip2x3 eip3x3

]
Im
{

p j
}

> 0, ( j = 1−3)
(4.16)

It is easy to show that the two matrices A and B satisfy the following normalized orthogonal
relationship [35] [

BT AT

B̄T ĀT

][
A Ā
B B̄

]
=
[

I 0
0 I

]
(4.17)

The above orthogonal relationship provides us with a simple way of inverting the eigen-
vector matrix, which is required in forming the transfer matrix.

Furthermore, in view of the above orthogonal relationship, we can also introduce the
generalized Barnett-Lothe tensors S, H, L defined by [35]

S = i(2ABT − I), H = 2iAAT , L =−2iBBT (4.18)
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with H and L being symmetric and positive definite, and SH, LS, H−1S, SL−1 being
anti-symmetric. The generalized Barnett-Lothe tensors will be useful when addressing a
semi-infinite medium. We further point out that, for isotropic materials, if we set

k1 = η cosθ , k2 = η sinθ (4.19)

where η is the norm of (k1, k2), and define the following three vectors

x =

 sinθ

−cosθ

0

 n =

 0
0
−1

 m =

cosθ

sinθ

0

 (4.20)

then the three generalized Barnett-Lothe tensors can be reduced to [35]

S =
1−2ν

2(1−ν)
(mnT −nmT ),

H =
1

4ηµ(1−ν)
[
(3−4ν)I+xxT ] ,

L =
ηµ

1−ν
(I−νxxT ).

(4.21)

With the displacement and traction vectors in Eq. (4.15), the in-plane stress components
can be expressed in terms of them asσ11

σ22
σ12

= i


k1c11 + k2c16 k1c16 + k2c12 k1c15 + k2c14

k1c12 + k2c26 k1c26 + k2c22 k1c25 + k2c24
k1c16 + k2c66 k1c66 + k2c26 k1c56 + k2c46

−
c15 c14 c13

c25 c24 c23
c56 c46 c36

T−1RT

u

+

c15 c14 c13
c25 c24 c23
c56 c46 c36

T−1t (4.22)

4.4 Transfer matrix for the (N−1) thin bonded layers
For a certain elastic layer k of finite thickness hk with its lower surface at x3 = zk−1 (k =
2,3, . . . ,N), it follows from Eqs. (4.15) and (4.17) that K1 and K2 can be expressed in terms
of the displacement and traction vectors at its lower interface x3 = zk−1 as[

K1
K2

]
=
[
〈e−ipα zk−1〉 0

0 〈e−ip̄α zk−1〉

][
BT AT

B̄T ĀT

][
u
−it

]
zk−1

(4.23)

Then the displacement and traction vectors at any position within this layer are related to
the displacement and traction vectors at its lower interface x3 = zk−1 as follows[

u
−it

]
= Ek(x3− zk−1)

[
u
−it

]
zk−1

(4.24)
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where

Ek(x3) =
[

A Ā
B B̄

][
〈eipα x3〉 0

0 〈eip̄α x3〉

][
BT AT

B̄T ĀT

]
(4.25)

is called the transfer matrix (or the propagator matrix) [85]. In deriving the above expres-
sion of Ek(x3), the orthogonal relationship in Eq. (4.17) has been utilized. Moreover, by
utilizing the orthogonal relationships in Eqs. (4.17) and (4.11), the transfer matrix Ek(x3)
can also be expressed in terms of a matrix exponential as

Ek(x3) = exp(iNx3) (4.26)

which is strikingly simple and can be easily calculated even if the matrix N is nonsemisim-
ple when the material is (mathematically) degenerate such as isotropic material [35]. Eq. (4.26)
demonstrates that by employing the matrix exponential for the transfer matrix, one can
avoid directly solving the eigenvalue problem of Eq. (4.11).

It follows from Eq. (4.24) that the displacement and traction vectors at the upper in-
terface x3 = zk of layer k are related to those at the lower interface x3 = zk−1 through the
following propagating relation [

u
−it

]
zk

= Ek(hk)
[

u
−it

]
zk−1

(4.27)

Consequently, the solution at the interface x3 = z−n (here the superscript “−” indicates
approaching the interface from below) of the multilayered system can be expressed by that
at the bottom interface x3 = 0 as[

u
−it

]
z−n

=
[

Y11 Y12
Y21 Y22

][
u
−it

]
0

(4.28)

where Y11, Y12, Y21, and Y22 are four 3×3 matrices given by[
Y11 Y12
Y21 Y22

]
= En(hn)×En−1(hn−1)×·· ·×E3(h3)×E2(h2) (4.29)

Similarly, the solution at the top interface x3 = H of the multilayered system can be ex-
pressed by that at the interface x3 = z+

n (here the superscript “+” indicates approaching the
interface from above) as [

u
−it

]
H

=
[

Ỹ11 Ỹ12
Ỹ21 Ỹ22

][
u
−it

]
z+

n

(4.30)

where Ỹ11, Ỹ12, Ỹ21, and Ỹ22 are four 3×3 matrices given by[
Ỹ11 Ỹ12
Ỹ21 Ỹ22

]
= EN(hN)×EN−1(hN−1)×·· ·×En+2(hn+2)×En+1(hn+1) (4.31)
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4.5 The general solution for the two semi-infinite media
Since x3 → −∞ for the bottom semi-infinite medium, the solution for the bottom semi-
infinite medium can be taken as[

u
−it

]
= 2i

[
Ā(1)
B̄(1)

]
〈eip̄α(1)x3〉B̄T

(1)qb (4.32)

where qb is a constant vector to be determined, and the subscript “(1)” is utilized to indi-
cate the quantities associated with the bottom semi-infinite medium 1. The above general
solution ensures that the elastic field approaches zero as x3→−∞.

Similarly, due to the fact that x3 → +∞ for the top semi-infinite medium, then the
general solution for the top semi-infinite medium can be taken as[

u
−it

]
= 2i

[
A(N+1)
B(N+1)

]
〈eipα(N+1)(x3−H)〉BT

(N+1)qu (4.33)

where qu is a constant vector to be determined, and the subscript (N + 1) is utilized to
indicate the quantities associated with the top semi-infinite medium N + 1. The above
general solution ensures that the elastic field approaches zero as x3→+∞.

4.6 Solution of the total structure
Enforcing that the displacements and tractions are continuous across the bottom interface
x3 = 0, it follows from Eqs. (4.28) and (4.32) that we can arrive at the following relationship
between the traction and displacement vectors at the interface x3 = z−n

t(z−n ) = i
[
Y21(iI−S(1))+Y22L(1)

][
Y11(iI−S(1))+Y12L(1)

]−1u(z−n ) (4.34)

During the derivation of the above expression, Eq. (4.18) for the generalized Barnett-Lothe
tensors has been used.

Similarly, due to the fact that the displacements and tractions are also continuous across
the top of the interface x3 = H, then it follows from Eqs. (4.30) and (4.33) that we can arrive
at the following relationship between the traction and displacement vectors at the interface
x3 = z+

n

t(z+
n ) =−i

[
Ỹ12 +(S(N+1) + iI)L−1

(N+1)Ỹ22

]−1 [
Ỹ11 +(S(N+1) + iI)L−1

(N+1)Ỹ21

]
u(z+

n )
(4.35)

In view of Eq. (4.1) for the double Fourier series, the boundary conditions on the interface
x3 = zn can be recast into

t(z+
n ) = t(z−n ), u(z+

n )−u(z−n ) = ∆ (4.36)

where
∆ =

[
∆

(G)
1 ∆

(G)
2 ∆

(G)
3

]T
(4.37)
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Consequently it follows from Eqs. (4.34)–(4.36) that the displacement and traction vectors
at x3 = zn can be uniquely determined as

u(z−n ) =−Ω
−1

∆

u(z+
n ) = (I−Ω

−1)∆

t(z+
n ) = t(z−n )

=−i
[
Y21(iI−S(1))+Y22L(1)

][
Y11(iI−S(1))+Y12L(1)

]−1
Ω
−1

∆

(4.38)

where

Ω = I+
[
Ỹ11 +(S(N+1) + iI)L−1

(N+1)Ỹ21

]−1 [
Ỹ12 +(S(N+1) + iI)L−1

(N+1)Ỹ22

]
×
[
Y21(iI−S(1))+Y22L(1)

][
Y11(iI−S(1))+Y12L(1)

]−1 (4.39)

Once the displacement and traction vectors are known at the interface x3 = zn, the displace-
ment and traction vectors at any position within layer k, (2≤ k≤ N), of the layered system
can be conveniently determined as[

u
−it

]
= Ek(x3− zk−1)×Ek−1(hk−1)×·· ·×E3(h3)×E2(h2)×

[
Y11 Y12
Y21 Y22

]−1[ u
−it

]
z−n

= Ek(x3− zk−1)×Ek(−hk)×Ek+1(−hk+1)×En−1(−hn−1)×En(−hn)
[

u
−it

]
z−n

(4.40)

for 2≤ k ≤ n and zk−1 < x3 < zk, and[
u
−it

]
= Ek(x3− zk−1)×Ek−1(hk−1)×·· ·×En+2(hn+2)×En+1(hn+1)

[
u
−it

]
z+

n

(4.41)

for n+1≤ k ≤ N and zk−1 < x3 < zk.
Similarly the displacement and traction vectors at any position within the bottom semi-

infinite anisotropic medium (x3 < 0) are given by[
u
−it

]
= 2i

[
Ā(1)
B̄(1)

]
〈eip̄α(1)x3〉B̄T

(1)
[
Y11(iI−S(1))+Y12L(1)

]−1u(z−n ) (4.42)

and the displacement and traction vectors at any position within the top semi-infinite anisotropic
medium (x3 > H) are given by[

u
−it

]
= 2i

[
A(N+1)
B(N+1)

]
〈eipα(N+1)(x3−H)〉BT

(N+1)(S(N+1) + iI)−1 [Ỹ11 Ỹ12
][ u
−it

]
z+

n

(4.43)

Once the displacement and traction vectors are known, the distributions of the in-plane
stresses σ11, σ22 and σ12 can be determined through Eq. (4.22).

For G = 0, the corresponding displacements are constant within each layer. In addition,
the constant displacements are common for each layer due to the fact that ∆

(G=0)
k = 0, and

therefore, can be chosen arbitrarily. For example they can be chosen to maintain (0,0,zn)
as a fixed point. Finally we can add together the results for different values of zero and
nonzero values of G.
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4.7 Main features of the methodology
The main features of the methodology presented in this work are:

1. One needs only to invert several 3×3 matrices to arrive at the displacement and trac-
tion vectors at any position within the anisotropic multilayered crystal (see Eqs. (4.38)–
(4.43)). Thus it is very suitable to address a crystal composed of an arbitrarily large
number of layers. Due to the time saved, then it becomes feasible, by summing
enough terms of the double Fourier series, to calculate the stress field close to the
interface where the array of misfit dislocations is located. It is a great advance com-
pared to the existing method, which is rather formidable and time consuming as it
requires inverting a 6N× 6N matrix for a multilayered structure with N interfaces.
The earlier approach is particularly difficult when the value of N is very large (say a
hundred layers).

2. When letting k2 = 0 (or k1 = 0), the derived solution can also be used to investi-
gate the periodic problem in the x1 (or x2) direction. One example is a multilay-
ered system containing an array of periodic misfit dislocations with Burgers vector
b̂ = (b̂1, b̂2, b̂3) along the planar interface x3 = zn [3]. In this case the 3D problem
is reduced to a 2D one in which the solutions are independent of the x2 (or the x1)
coordinate.

3. The solution of the eigenvalue problem Eq. (4.11) for the (N−1) thin layers can be
circumvented due to the fact that the transfer matrix can be expressed in terms of
matrix exponential (Eq. (4.25)). As a result, each thin layer can be made of either
anisotropic material or the mathematically degenerated isotropic material. In general
the eigenvalue problem Eq. (4.11) has to be solved for the two semi-infinite media
since there is no such a concept of transfer matrix for a semi-infinite medium. On
the other hand if the explicit expressions of the generalized Barnett-Lothe tensors S,
H and L are known for the involved material like the isotropic case (see Eq. (4.21)),
then even the solution of the eigenvalue problem Eq. (4.11) for the two semi-infinite
media is unnecessary if one is interested in the elastic fields in the welded (N− 1)
thin layers. In this special case, the elastic fields in the thin layers are completely
determined by the transfer matrices Yi j, Ỹi j, (i, j = 1,2) and the generalized Barnett-
Lothe tensors S(1), L(1), S(N+1), L(N+1) (see Eqs. (4.38)–(4.41)).

4. Should there be any thick layer in the layered system, the corresponding transfer ma-
trix can be normalized using the method proposed by Pan [83]. Furthermore, to ac-
celerate the convergence of the Fourier series for observation points close to the dis-
location segment, the explicit solution to the corresponding homogeneous space can
be utilized so that the singular and slow convergent part can be analytically treated
[86].
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x3 (nm) 0 2 6 8

(isotropic) σ11 (107 Pa) −19.9/−37.7 51.0/56.5 23.0/−2.71 4.65/16.1
(−19.9/−37.7) (50.8/56.5) (23.0/−2.6) (4.7/16.1)

(cubic) σ11 (107 Pa) −15.2/−40.8 49.1/70.4 12.2/−24.5 7.37/26.3

Table 4.1: Values of σ11 on the two sides of each interface of the multilayer GaAs/
Si/GaAs/Si/GaAs/Si with N = 5. The interface locations are denoted by x3. Two material
cases are studied: elastically isotropic (assumed for demonstration purposes) and elasti-
cally cubic (true). The values in the parentheses in the second row are the results of Bonnet
[3].

4.8 Application
To verify the correctness and to show the power of the method, we first consider a multilay-
ered structure with N = 5, formed by four thin alternating GaAs and Si layers sandwiched
between two semi-infinite media GaAs and Si. This problem was discussed by Bonnet [3]
when the six alternating media were assumed to be isotropic. The thickness of each layer
is 2 nm, and as a result, the five interfaces are located at x3 = 0,2,4,6,8 nm. We con-
sider the problem of a single array of periodic edge misfit dislocations with Burgers vector
b̂ = (b̂1, b̂2, b̂3) = (0.3838 nm, 0, 0) located along the central interface x3 = 4 nm. The
result is a sawtooth change of misfit displacement ∆uk = u(n+1)

k − u(n)
k , (n = 3) along the

interface, which can be expanded into Fourier series [3]. The period Λ of the misfit dislo-
cations is 9.7 nm. In addition the misfit dislocations are infinitely long in the x2-direction.
As a result the problem is 2D in which the solutions are independent of the x2 coordinate.
Furthermore, we take k1 = 2πm/Λ with m being a nonzero integer and k2 = 0 in our for-
mulation. We calculate the in-plane stress component σ11 and the traction component σ33
along the x3-axis (x1 = 0). First, as in Ref. 3. we assume that both GaAs and Si are isotropic
with elastic constants µGaAs = 46.01 GPa, νGaAs = 0.24, µSi = 66.11 GPa, νSi = 0.23. The
distributions of σ11 and σ33 along the x3-axis when each medium is isotropic are illus-
trated as dashed lines in Figures 4.2 and 4.3, and the values of σ11 on the two sides of the
interfaces x3 = 0,2,6,8 nm are given in the second row of Table 4.1. It is observed that
the present method based on the Stroh formalism and transfer matrix produces exactly the
same the results as in Bonnet [3]. Consequently the correctness of the method is verified.

Both GaAs and Si are elastically anisotropic (cubic) with elastic constants c11 = 118 GPa,
c12 = 53.5 GPa, c44 = 59.4 GPa for GaAs and c11 = 165.7 GPa, c12 = 63.9 GPa, c44 =
79.6 GPa for Si [3, 79, 80]. Therefore, it would be interesting to study the influence of
material anisotropy on the misfit dislocation-induced field. The distributions of σ11 and
σ33 along the x3-axis when each medium is anisotropic (cubic) are illustrated as solid
lines in Figs 4.2 and 4.3 and the values of σ11 on the two sides of the interfaces x3 =
0,2,6, and 8 nm are further listed in the third row of Table 4.1 for comparison with the
corresponding isotropic case. Clearly both σ11 and σ33 based on the true anisotropic (cu-
bic) material model are significantly different from the corresponding results when each
medium is simplified to be isotropic. As such, the effect of semiconductor anisotropy on
the misfit dislocation-induced stresses should be taken into consideration for more accurate
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Figure 4.2: Distribution of the in-plane stress σ11 along the x3-axis (x1 = 0) for a N = 5
multilayered structure formed by alternating GaAs and Si. The misfit dislocation array lies
at the interface x3 = 4 nm and is infinitely long in the x2-direction. The dark solid lines
are the results when GaAs and Si are taken to be cubic and the pink dashed lines are the
corresponding results when GaAs and Si are assumed to be isotropic.
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Figure 4.3: Distribution of the in-plane stress σ33 along the x3-axis (x1 = 0) for a N = 5
multilayered structure formed by alternating GaAs and Si. The misfit dislocation array lies
at the interface x3 = 4 nm and is infinitely long in the x2-direction. The dark solid lines
are the results when GaAs and Si are taken to be cubic and the pink dashed lines are the
corresponding results when GaAs and Si are assumed to be isotropic.
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Figure 4.4: Periodic distribution of the horizontal displacement u1 along the traction-free
surface of the InAs thin film bonded to GaAs substrate. The misfit dislocation array lies at
the InAs/GaAs interface. The dark solid line is the result when both the InAs thin film and
GaAs substrate are taken to be cubic, whereas the pink dashed line is the corresponding
result when both InAs and GaAs are assumed to be isotropic.

modelling of the multilayer GaAs/Si.
Next we consider an edge misfit dislocation array with Burgers vector b̂ =(b̂1, b̂2, b̂3)=

(0.2 nm, 0, 0) and the period Λ = 6 nm along the heterointerface between the InAs (c11 =
83.29 GPa, c12 = 45.26 GPa, c44 = 39.59 GPa) thin film of thickness h = 2 nm and GaAs
substrate with its cubic material properties given above. In this case N = 2. We illustrate
in Figures 4.4 and 4.5 the induced horizontal displacement u1 and vertical displacement u3
along the traction-free surface of the InAs thin film. The solid lines in Figures 4.4 and 4.5
are the results when both the InAs thin film and GaAs substrate are taken to be anisotropic
(cubic), whereas the dashed lines are the corresponding results when they are assumed to
be isotropic (with c11 = c12 + 2c44). Once again we observe that the isotropic assumption
for the thin film and substrate could cause considerable error in displacement distribution.
Therefore, our model, which includes the traction-free surface, semiconductor anisotropy,
and misfit dislocation interaction among adjacent dislocations, can be combined with ex-
perimental measurements to accurately characterize the misfit dislocation induced elastic
field in thin-film and superlattice structures [87–89].

75



Figure 4.5: Periodic distribution of the horizontal displacement u3 along the traction-free
surface of the InAs thin film bonded to GaAs substrate. The misfit dislocation array lies at
the InAs/GaAs interface. The dark solid line is the result when both the InAs thin film and
GaAs substrate are taken to be cubic, whereas the pink dashed line is the corresponding
result when both InAs and GaAs are assumed to be isotropic.
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4.9 Conclusions
We have developed an efficient computational method based on double Fourier series ex-
pansion, the Stroh formalism, and transfer matrix method for calculating the elastic field
associated with a semiconductor system composed of an arbitrarily number of thin bonded
homogeneous and anisotropic elastic layers, sandwiched between two anisotropic semi-
infinite media. One interface of the multilayered crystal contains a biperiodic array of
misfit dislocations. The formulations presented are strikingly simple in that once the 6×6
matrix N for each thin elastic layer and the Barnett-Lothe tensors L and S for the two
semi-infinite media are determined, the displacement and traction vectors (and as a result
the in-plane stresses) can be conveniently obtained. Numerical results show that the new
method is correct and powerful, and that material anisotropy can significantly influence the
misfit dislocation-induced physical quantities.
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Chapter 5

Decay rates for a transversely isotropic
piezoelectric hollow circular
nanocolumn

5.1 Introduction
Decay rate of stresses and displacements along the longitudinal direction due to self-
equilibrating loads acting at the end of the hollow or solid circular cylinder is an old but
challenging mechanics problem. By employing the Love displacement solution, Klemm
and Little [90] presented a complete analysis for a long solid circular cylinder with one end
being traction-free and the other end under a self-equilibrated traction. Earlier investiga-
tors on the decay of the elastic field along solid circular cylinders include Purse (see Love
[91]) who obtained the eigenfunctions governing axisymmetric torsion problem, and Little
and Childs [92] who obtained a vector bi-orthogonality from Love’s strain function. Later
on Stephen and Wang [93] considered the self-equilibrated end load problem for a semi-
infinite hollow circular cylinder by using the Papkovitch-Neuber solution to the elastostatic
displacement equations of equilibrium, and derived solutions for both the axisymmetric
and asymmetric cases. Stephen [94] further considered the decay rates for a compound
circular cylinder of two materials having different stiffness. Ye [95, 96] studied the decay
rates of angle-ply laminated hollow cylinders based on the recursive and approximation
technique. Piezoelectric materials and structures have attracted great attention due to their
capability of converting the mechanical energy into the electric one, and vice versa. As
such, the corresponding Saint-Venant’s principle in piezoelectricity has been investigated
by many researchers e.g., [97]. These include decay rates under anti-plane [98] and plane
[99, 100] deformations. However, to the best of the authors’ knowledge, decay rate in three-
dimensional (3D) piezoelectric hollow/solid cylinder has not been studied so far, which yet
may have great technical applications to semiconductor industry as discussed below.

In recently years, various semiconductor nanostructures have been successfully grown
to enhance optoelectronic and electronic properties. Among them, the novel nanopost and
nanocolumn structures are particularly of promise, as reported by Chen et al. [101], Van
Nostrand et al. [102], and Thillosen et al. [103]. However, the strain relaxation feature
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along the nanopost or nanocolumn is critical from the device design point of view. There-
fore, in this paper, we determine the exact decay rates of the elastic and electric fields
along the growth direction of a piezoelectric hollow or solid nanocolumn by developing
the general solution for the corresponding 3D problems [104, 105]. While the more gen-
eral asymmetric case can be discussed by using the present formulation, we confine our
attention to the torsional and torsionless axisymmetric cases. Numerical results presented
clearly show the importance of the material anisotropy and electromechanical coupling on
the decay rate of nanocolumns.

5.2 General Solutions of Transversely Isotropic Piezoelec-
tric Solids

As shown in Figure 5.1, we attach a fixed Cartesian coordinate system (x,y,z) and a circular
cylindrical coordinate system (r,θ ,z) to the nanocolumn which is free-standing on a sub-
strate [102]. For the transversely isotropic (or hexagonal crystal) piezoelectric hollow/solid
circular nanocolumn with poling direction along the z-axis, the equilibrium equations in
terms of the electric potential φ and the three displacements u,v,w along the x, y and z
directions are (assuming also zero body force and zero electric charge density)

c11u,xx +
1
2
(c11− c12)u,yyc44u,zz+

+
1
2
(c11 + c12)v,xy +(c13 + c44)w,xz +(e15 + e31)φ,xz = 0 (5.1a)

1
2
(c11− c12)v,xx + c11v,yy + c44v,zz

+
1
2
(c11 + c12)u,xy +(c13 + c44)w,yz +(e31 + e15)φ,yz = 0 (5.1b)

c44(w,xx +w,yy)+ c33w,zz +(c13 + c44)(u,xz + v,yz)+ e15(φ,xx +φ,yy)+ e33φ,zz = 0 (5.1c)

e15(w,xx +w,yy)+ e33w,zz +(e15 + e31)(u,xz + v,yz)−∈11(φ,xx +φ,yy)−∈33φ,zz = 0 (5.1d)

where ci j,ei j,∈i j are, respectively, the elastic, piezoelectric and dielectric coefficients of the
piezoelectric solid, and the symbol u,xy denotes differentiations of the elastic displacement
component u with respect to x and y. In addition the linear constitutive equations in the
Cartesian coordinate system are given by

σxx
σyy
σzz
σzy
σzx
σxy
Dx
Dy
Dz


=



c11 c12 c13 0 0 0 0 0 e31
c12 c11 c13 0 0 0 0 0 e31
c13 c13 c33 0 0 0 0 0 e33
0 0 0 c44 0 0 0 e15 0
0 0 0 0 c44 0 e15 0 0
0 0 0 0 0 c66 0 0 0
0 0 0 0 e15 0 −∈11 0 0
0 0 0 e15 0 0 0 −∈11 0

e31 e31 e33 0 0 0 0 0 −∈33





εxx
εyy
εzz

2εzy
2εzx
2εxy
−Ex
−Ey
−Ez


(5.2)
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Figure 5.1: A simplified free-standing transversely isotropic piezoelectric nanocolumn over
a substrate.

It is obvious that the xy-plane is the isotropic plane and the elastic and piezoelectric prop-
erties are uniform within this plane. In Eq. (5.2), c66 = (c11− c12)/2 and

εxx = u,x εyy = v,y εzz = w,z

εxy =
1
2
(u,y + v,x) εzx =

1
2
(u,z +w,x) εzy =

1
2
(v,z +w,y)

Ex =−φ,x Ey =−φ,y Ez =−φ,z

(5.3)

It can be shown that the displacements u, v, w, the electric potential φ , the stresses
σxx,σyy,σxy,σzz,σzx,σzy, and the electric displacements Dx,Dy,Dz can all be concisely ex-
pressed in terms of a 3×1 harmonic function vector P = [Φ1 Φ2 Φ3]T and a scalar harmonic
function Φ0 as [105]

u+ iv = Λ(J̃P+ iΦ0)
[
w φ

]T = KP,z,

σxx +σyy = 2(c66J̃H− c44J̃− ĨT
0 BK)P,zz

σxx−σyy +2iσxy = 2c66Λ
2(J̃P+ iΦ0)[

σzz
Dz

]
= B(Ĩ0J̃+K)HP,zz

[
σzx + iσzy
Dx + iDy

]
= ΛB

[
(Ĩ0J̃+K)P,z + iĨ0Φ0,z

] (5.4)

where

Λ =
∂

∂x
+ i

∂

∂y
J̃ =

[
1 1 1

]
Ĩ0 =

[
1 0

]T (5.5a)

K =
[
k1 k2 k3

]
H = diag

[
λ1 λ2 λ3

]
(5.5b)

u =
[

c13 + c44
e15 + e31

]
A =

[
c33 e33
e33 −∈33

]
B =

[
c44 e15
e15 −∈11

]
(5.5c)
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ki = λi(A−λiB)−1u (5.5d)

and Φi (i = 0,1,2,3) satisfy

Φi,xx +Φi,yy +λiΦi,zz = 0 (i = 0, 1, 2, 3) (5.6)

where λ0 = c44/c66 and λi,(i = 1,2,3) are the three roots of the following cubic equation

aλ
3 +bλ

2 + cλ +d = 0 (5.7)

with

a = c11(c44∈11 + e2
15)

b =−c11(c33∈11 + c44∈33 +2e15e33)− c44(c44∈11 + e2
15)

+∈11(c13 + c44)2− c44(e15 + e31)2 +2e15(c13 + c44)(e15 + e31)

c = c11(c33∈33 + e2
33)+ c44(c33∈11 + c44∈33 +2e15e33)

−∈33(c13 + c44)2−2e33(c13 + c44)(e15 + e31)+ c33(e15 + e31)2

d =−c44(c33∈33 + e2
33)

(5.8)

It shall be mentioned that the above general solution (5.4) is only valid whenλ1 6= λ2 6=
λ3. Therefore, when addressing the corresponding purely elastic isotropic material case
or any other possible material cases where repeated roots occur, a small perturbation is
given to the material coefficients to make the three eigenvalues unequal so that the general
solution presented in this paper can still be applied with negligible errors [64]. The above
general solution (5.4) can also be easily expressed in the cylindrical coordinate system
(r,θ ,z) as follows

ur + iuθ = Λc(J̃P+ iΦ0)
[
w φ

]T = KP,z

σrr +σθθ = 2(c66J̃H− c44J̃− ĨT
0 BK)P,zz

σrr−σθθ +2iσrθ = 2c66(Λ2
c− r−1

Λc)(J̃P+ iΦ0)[
σzz
Dz

]
= B(Ĩ0J̃+K)HP,zz

[
σzr + iσzθ

Dr + iDθ

]
= ΛcB

[
(Ĩ0J̃+K)P,z + iĨ0Φ0,z

] (5.9)

where

Λc =
∂

∂ r
+ i

1
r

∂

∂θ
Λ

2
c−

1
r

Λc =
(

∂

∂ r
− 1

r
+ i

1
r

∂

∂θ

)(
∂

∂ r
+ i

1
r

∂

∂θ

)
(5.10)

For the torsional axisymmetric deformation of the piezoelectric solid we have ur = w =
φ = σrr = σθθ = σzz = σzr = Dr = Dz = 0 and P = 0. Then the general solution (5.9) is
reduced to

uθ = Φ0,r σrθ = c66(Φ0,rr− r−1
Φ0,r)

[
σzθ

Dθ

]
= BĨ0Φ0,rz (5.11)
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On the other hand, for the torsionless axisymmetric deformation of the piezoelectric solid
we have uθ = σrθ = σzθ = Dθ = 0 and Φ0 = 0. For this case, the above general solu-
tion (5.9) is reduced to

ur = J̃P,r
[
w φ

]T = KP,z

σrr +σθθ = 2(c66J̃H− c44J̃− ĨT
0 BK)P,zz

σrr−σθθ = 2c66J̃(P,rr− r−1P,r)[
σzz
Dz

]
= B(Ĩ0J̃+K)HP,zz

[
σzr
Dr

]
= B(Ĩ0J̃+K)P,rz

(5.12)

5.3 Decay rates of the transversely isotropic piezoelectric
nanocolumn

We assume that the circular hollow nanocolumn occupies the region a≤ r≤ b, 0≤ z≤+∞.
In this investigation we only consider the torsional and torsionless axisymmetric deforma-
tions of the nanocolumn. The two lateral surfaces of the column r = a and r = b are
traction-free, i.e.,

σrr = σrz = σrθ = 0, on r = a and r = b (5.13)

In addition either charge-free (insulating) condition Dr = 0 or electroded (conducting)
condition φ = 0 is imposed on the two surfaces r = a and r = b.

5.3.1 Torsional Case
We first point out that the torsional case is purely elastic and that its solution is associ-
ated with the scalar harmonic function Φ0 only. Assuming that the field quantity in the
nanocolumn decays exponentially in its growth direction, we then write

Φ0 = B1J0(ρ
√

λ0r)e−ρz +B2Y0(ρ
√

λ0r)e−ρz (5.14)

where B1 and B2 are two constants to be determined, Jn and Yn are the nth-order Bessel
functions of the first and second kinds, respectively. Substituting Eq. (5.14) into the general
solution (5.11) and imposing the traction-free boundary conditions σrθ = 0 on r = a and
r = b, we arrive at the following homogeneous linear equations for B1 and B2,[

J2(ρ
√

λ0a) Y2(ρ
√

λ0a)
J2(ρ

√
λ0b) Y2(ρ

√
λ0b)

][
B1
B2

]
=
[

0
0

]
(5.15)

A nontrivial solution to Eq. (5.15) yields the transcendental equation for ρ ,

J2(ρ
√

λ0a)Y2(ρ
√

λ0b)−Y2(ρ
√

λ0a)J2(ρ
√

λ0b) = 0 (5.16)

which is identical to that derived by Stephen and Wang [93] if we set k = ρ
√

λ0. Therefore,
once the decay rate for the torsional deformation of an isotropic elastic hollow cylinder is
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calculated, the torsional decay rate for the corresponding transversely isotropic piezoelec-
tric nanocolumn can be simply found by dividing result by the factor

√
λ0. In other words,

the decay rate for the torsional case of the transversely isotropic piezoelectric nanocolumn
is inversely proportional to the ratio

√
λ0 =

√
c44/c66.

5.3.2 Torsionless Case
Similarly, for this case, we assume that the physical quantity in the nanocolumn decays
exponentially as

P = e−ρz
[
〈J0(ρ

√
λαr)〉C1 + 〈Y0(ρ

√
λαr)〉C2

]
(5.17)

where the pointed brackets 〈∗〉 stand for a 3× 3 diagonal matrix with its element varying
with the index α , C1 and C2 are two 3×1 constant vectors to be determined. Substituting
Eq. (5.17) into the general solution (5.12) and imposing the traction-free and charge-free
(or electroded) boundary conditions on r = a and r = b, we arrive at the following homo-
geneous linear equations for C1 and C2

A11C1 +A12C2 = 0
A21C1 +A22C2 = 0

(5.18)

where the elements of the matrices Ai j are given below for different boundary conditions
at r = a and r = b.

If r = a and r = b are traction-free and charge-free (Dr = 0), then

A11 =

[
(Ĩ0J̃+K)

√
H〈J1(ρa

√
λα)〉

2c66J̃
√

H〈J1(ρa
√

λα)〉−ρa(c44J̃+ ĨT
0 BK)〈J0(ρa

√
λα)〉

]

A12 =

[
(Ĩ0J̃+K)

√
H〈Y1(ρa

√
λα)〉

2c66J̃
√

H〈Y1(ρa
√

λα)〉−ρa(c44J̃+ ĨT
0 BK)〈Y0(ρa

√
λα)〉

]

A21 =

[
(Ĩ0J̃+K)

√
H〈J1(ρb

√
λα)〉

2c66J̃
√

H〈J1(ρb
√

λα)〉−ρb(c44J̃+ ĨT
0 BK)〈J0(ρb

√
λα)〉

]

A22 =

[
(Ĩ0J̃+K)

√
H〈Y1(ρb

√
λα)〉

2c66J̃
√

H〈Y1(ρb
√

λα)〉−ρb(c44J̃+ ĨT
0 BK)〈Y0(ρb

√
λα)〉

]
(5.19)
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If r = a and r = b are traction-free and electroded (φ = 0, then

A11 =


[
0 1

]
K〈J0(ρa

√
λα)〉

ĨT
0 B(Ĩ0J̃+K)

√
H〈J1(ρa

√
λα)〉

2c66J̃
√

H〈J1(ρa
√

λα)〉−ρa(c44J̃+ ĨT
0 BK)〈J0(ρa

√
λα)〉


A12 =


[
0 1

]
K〈Y0(ρa

√
λα)〉

ĨT
0 B(Ĩ0J̃+K)

√
H〈Y1(ρa

√
λα)〉

2c66J̃
√

H〈Y1(ρa
√

λα)〉−ρa(c44J̃+ ĨT
0 BK)〈Y0(ρa

√
λα)〉


A21 =


[
0 1

]
K〈J0(ρb

√
λα)〉

ĨT
0 B(Ĩ0J̃+K)

√
H〈J1(ρb

√
λα)〉

2c66J̃
√

H〈J1(ρb
√

λα)〉−ρb(c44J̃+ ĨT
0 BK)〈J0(ρb

√
λα)〉


A22 =


[
0 1

]
K〈Y0(ρb

√
λα)〉

ĨT
0 B(Ĩ0J̃+K)

√
H〈Y1(ρb

√
λα)〉

2c66J̃
√

H〈Y1(ρb
√

λα)〉−ρb(c44J̃+ ĨT
0 BK)〈Y0(ρb

√
λα)〉



(5.20)

If r = a is traction-free and charge-free while r = b is traction-free and electroded, then

A11 =

[
(Ĩ0J̃+K)

√
H〈J1(ρa

√
λα)〉

2c66J̃
√

H〈J1(ρa
√

λα)〉−ρa(c44J̃+ ĨT
0 BK)〈J0(ρa

√
λα)〉

]

A12 =

[
(Ĩ0J̃+K)

√
H〈Y1(ρa

√
λα)〉

2c66J̃
√

H〈Y1(ρa
√

λα)〉−ρa(c44J̃+ ĨT
0 BK)〈Y0(ρa

√
λα)〉

]

A21 =


[
0 1

]
K〈J0(ρb

√
λα)〉

ĨT
0 B(Ĩ0J̃+K)

√
H〈J1(ρb

√
λα)〉

2c66J̃
√

H〈J1(ρb
√

λα)〉−ρb(c44J̃+ ĨT
0 BK)〈J0(ρb

√
λα)〉


A22 =


[
0 1

]
K〈Y0(ρb

√
λα)〉

ĨT
0 B(Ĩ0J̃+K)

√
H〈Y1(ρb

√
λα)〉

2c66J̃
√

H〈Y1(ρb
√

λα)〉−ρb(c44J̃+ ĨT
0 BK)〈Y0(ρb

√
λα)〉



(5.21)

If r = a is traction-free and electroded while r = b is traction-free and charge-free, then

A11 =


[
0 1

]
K〈J0(ρa

√
λα)〉

ĨT
0 B(Ĩ0J̃+K)

√
H〈J1(ρa

√
λα)〉

2c66J̃
√

H〈J1(ρa
√

λα)〉−ρa(c44J̃+ ĨT
0 BK)〈J0(ρa

√
λα)〉


A12 =


[
0 1

]
K〈Y0(ρa

√
λα)〉

ĨT
0 B(Ĩ0J̃+K)

√
H〈Y1(ρa

√
λα)〉

2c66J̃
√

H〈Y1(ρa
√

λα)〉−ρa(c44J̃+ ĨT
0 BK)〈Y0(ρa

√
λα)〉


A21 =

[
(Ĩ0J̃+K)

√
H〈J1(ρb

√
λα)〉

2c66J̃
√

H〈J1(ρb
√

λα)〉−ρb(c44J̃+ ĨT
0 BK)〈J0(ρb

√
λα)〉

]

A22 =

[
(Ĩ0J̃+K)

√
H〈Y1(ρb

√
λα)〉

2c66J̃
√

H〈Y1(ρb
√

λα)〉−ρb(c44J̃+ ĨT
0 BK)〈Y0(ρb

√
λα)〉

]
(5.22)
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The condition that Eq. (5.18) admits a nontrivial solution yields the transcendental
equation for ρ ∣∣∣∣A11 A12

A21 A22

∣∣∣∣= 0 (5.23)

We remark that when the piezoelectric tensor vanishes (i.e., ei j = 0), the problem decouples
into purely elastic and purely dielectric ones. While the purely elastic case is still relative
complicated, the purely dielectric case can be simply discussed below for different electric
boundary conditions.

It is found that if both r = a and r = b of a dielectric hollow circular nanocolumn are
charge-free, then the transcendental equation for ρ is

J1(sρa)Y1(sρb)−Y1(sρa)J1(sρb) = 0 (5.24)

where

s =
√
∈33

∈11
(5.25)

If both r = a and r = b are electroded, then the transcendental equation for ρ is

J0(sρa)Y0(sρb)−Y0(sρa)J0(sρb) = 0 (5.26)

If r = a is charge-free whilst r = b is electroded, then the transcendental equation for ρ is

J1(sρa)Y0(sρb)−Y1(sρa)J0(sρb) = 0 (5.27)

If r = a is electroded whilst r = b is charge-free, then the transcendental equation for ρ is

J0(sρa)Y1(sρb)−Y0(sρa)J1(sρb) = 0 (5.28)

The calculations show that the roots to the transcendental equations (5.24) and (5.26)–
(5.28) are all real [93, 94].

5.4 Results and Discussions
First, our results are verified by comparison with existing isotropic solutions. It is noted
that by using a small perturbation from isotropy to anisotropy, our decay rates based on
the present formulation are in complete agreement with those in Little and Childs [92] for
an isotropic elastic solid circular cylinder, and in Stephen and Wang [93] for an isotropic
elastic hollow circular cylinder. For example we illustrate in Figure 5.2 the complex decay
roots ρb for axisymmetric torsionless displacements for an isotropic elastic hollow cylinder
with Poisson’s ratio ν = 0.25. It is observed that Figure 5.2 here is identical to Figure 3 in
Stephen and Wang [93].

Next, we present specific results for the transversely isotropic piezoelectric GaN (gal-
lium nitride) nanocolumn [102]. It is noted that GaN is a semiconductor compound with
strong coupling between the electric and mechanical fields and with a wide energy bandgap
[4, 5]. As such, the corresponding GaN nanopost and nanocolumn growth and overgrowth
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Figure 5.2: Dimensionless complex decay roots ρb under axisymmetric torsionless defor-
mation for an isotropic elastic hollow nanocolumn with Poisson’s ratio ν = 0.25. Only real
parts of the roots are shown.

c11 = c22 (GPa) 390.0
c33 398.0
c12 145.0
c13 = c23 106.0
c44 = c55 105.0
c66[= (c11− c12)/2] 122.5

e15 (C/m2) -0.30
e31 -0.33
e33 0.65

ε11=ε22 (10−12 C2/(N ·m2)) 78.8
ε33 78.8

Table 5.1: Material properties of GaN [4, 5]
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Figure 5.3: Dimensionless complex decay roots ρb under axisymmetric torsionless defor-
mation for a transversely isotropic piezoelectric hollow GaN nanocolumn with boundary
condition Dr = 0 on r = a and r = b. Only real parts of the roots are shown.

have recently attracted wide attention in semiconductor community [101–103]. The mate-
rial properties of the transversely isotropic (or hexagonal) GaN with its material symmetry
axis along the z-direction are listed in Table 5.1.

Figure 5.3 demonstrates the dimensionless real and complex decay roots ρb under the
axisymmetric torsionless deformation for the transversely isotropic piezoelectric hollow
GaN nanocolumn. Both surfaces r = a and r = bare insulating, i.e., Dr = 0. Similarly,
Figure 5.4 presents the corresponding results when both r = a and r = b are conducting
(or electroded), i.e., φ = 0. It is found that even for the axisymmetric torsionless case,
there exists an intriguing interaction between the real and complex root loci due to the
anisotropic effect and the electromechanical coupling (the piezoelectric effect). For the
purely elastic and isotropic case, such interactions only occur for the non-axisymmetric
deformation [94]. Different electrical boundary conditions (insulating or conducting) also
influence the root loci. The decay rate, defined as the decay distance of end effects (or
the strain relaxation rate), is the real part of the root with smallest positive real part. By
comparing Figures 5.3 and 5.4, we find that when a/b > 0.05, the difference between
the decay rates for the insulating and conducting cases is minimal. On the other hand,
the discrepancy in decay rates for the two different electric conditions is most apparent
for a solid cylinder: ρb = 2.855 for insulating condition and ρb = 2.605 for conducting
condition.

87



Figure 5.4: Dimensionless complex decay roots ρb under axisymmetric torsionless defor-
mation for a transversely isotropic piezoelectric hollow GaN nanocolumn with boundary
condition φ = 0 on r = a and r = b. Only real parts of the roots are shown.
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Figure 5.5: Dimensionless complex decay roots ρb under axisymmetric torsionless defor-
mation for a decoupled purely elastic and purely electric hollow GaN nanocolumn. The
smallest decay model loci of the corresponding fully coupled piezoelectric case are also
shown for comparison (the dashed line is for insulating and dash-dotted line for conducting
boundary conditions on the two surface). Only real parts of the roots are shown.

We remark that Figure 5.3 should be extremely useful for the GaN nanopost and nanocol-
umn growth as the experimental environment is most likely insulating instead of conduct-
ing. For instance, for a solid GaN nanocolumn of radius b = 100 nm, using the normalized
decay rate ρb = 2.855, we find that the elastic and electric fields at the height z = 161 nm
are reduced to 1% of the value at the bottom of the nanocolumn z = 0. We further observe
from Figure 5.3 that for a hollow GaN nanocolumn, there is a special ratio a/b where the
normalized decay rate reaches its minimum (i.e., ρb = 2.447 at a/b = 0.4). When the
wall of the hollow nanocolumn becomes thinner than a/b = 0.4, then the normalized decay
rate increases. The thinner the hollow nanocolumn, the faster the elastic and electric fields
decay.

In order to clearly demonstrate how the piezoelectricity influences the decay roots, we
present in Figure 5.5 the decay roots for a GaN hollow nanocolumn by ignoring the piezo-
electric effects (i.e., ei j = 0). In Figure 5.5, besides the decoupled purely elastic roots under
the traction-free boundary condition, the decoupled purely electric roots under the insulat-
ing boundary condition (by the marked dashed lines) are also presented for comparison.
Furthermore, in Figure 5.5, we have redrawn (from Figures 5.3 and 5.4) the smallest de-
cay mode loci for the corresponding fully coupled piezoelectric case (dashed line for the
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insulating condition on the two surfaces, and dash-dotted line for the conducting condition
on the two surfaces). By comparing Figure 5.5 with the previous two figures, 5.3 and 5.4,
we observe that the piezoelectric effect can influence the root loci, especially those of the
higher decay modes. As far as the decay rate is concerned, the piezoelectric effects must
be taken into consideration for thick cylinders a/b < 0.2, and they can only be ignored for
relatively thin cylinders a/b > 0.2. In other words, in the analysis of the strain and electric
fields in GaN nanocolumn structures, it is recommended that the fully coupled piezoelectric
model should be employed [1, 21, 22]. This is particularly true for the solid nanocolumn
where a decay rate of ρb = 3.2213 is predicted for the decoupled purely elastic case whilst
ρb = 2.855 and ρb = 2.605 corresponding to the fully coupled piezoelectric case with
insulating and conducting boundary conditions, respectively (Figure 5.5 for the smallest
loci at a/b = 0). Figure 5.5 also indicates clearly that even for the decoupled piezoelectric
case, an interaction between the real and complex root loci still exists. We remark that the
decay roots for the axisymmetric torsionless displacements for an isotropic elastic hollow
nanocolumn are all complex and there is no mode coupling phenomenon (see Figure 5.2
here or Figure 3 in Stephen and Wang [93]). Thus we conclude that the material anisotropy
in nanocolumn can also significantly influence the decay roots.

5.5 Conclusions
Decay rate of the elastic and piezoelectric fields along a transversely isotropic piezoelectric
hollow/solid circular nanocolumn is investigated in detail by developing the general solu-
tion for the corresponding 3D problem. It is shown clearly that the geometric parameter,
material anisotropy, and piezoelectricity can all significantly affect the decay rate, thus in-
fluence the strain and electric field relaxation in the piezoelectric hollow/solid nanocolumn.
Particularly, a solid GaN nanocolumn can have a decay rate of ρb = 3.2213 for the decou-
pled purely elastic case, and ρb = 2.855 and ρb = 2.605 for the fully coupled piezoelectric
case with insulating and conducting boundary conditions, respectively. This obviously in-
dicates that the piezoelectric effect can not be ignored for a solid GaN nanocolumn as far
as the decay rate is concerned. Results presented in this paper should be particularly useful
to guide the nanopost and nanocolumn growth where the growth induced strain is critical
to the corresponding semiconductor nanostructured devices. Even though only the simple
axisymmetric case is discussed, the methodology can be easily extended to the more com-
plicated asymmetric case. For the asymmetric case, due to the coupling between torsional
and torsionless displacements, between mechanical and electric fields (the piezoelectric ef-
fects), and to the anisotropic effect, it is expected that the decay root loci for this situation
are more complex than their isotropic counterparts.
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Chapter 6

Electromagnetic Fields Induced by a
Concentrated Heat Source in
Multiferroic Materials

6.1 Introduction
Multiferroic materials simultaneously possess both ferroelectric and ferromagnetic (or an-
tiferromagnetic) order in the same phase. They hold great potential for applications as the
multiferroic coupling allows switching of the magnetic state by an electric field and like-
wise switching of the ferroelectric polarization by a magnetic field [38, 39, 42, 106, 107].
Significantly, multiferroics could lead to a new generation of memory and microwave de-
vices that can be controlled both electrically and magnetically [42, 107].

The Green’s functions in multiferroic materials can be utilized to tailor the magneto-
electric effect [41, 108] and to investigate inclusions of various shapes with spontaneous
polarization and magnetization [48, 50]. Li and Li [50] obtained Green’s functions for the
uniaxial multiferroic material induced by a point electric or magnetic charge. The Green’s
functions for a uniaxial multiferroic half-space and bimaterial were addressed very recently
[47]. The corresponding Green’s functions for exponentially graded uniaxial multiferroic
materials were also derived [109]. However, the aforementioned works on Green’s func-
tions in multiferroic materials [47, 50] were confined to the isothermal case in which the
pyroelectric and pyromagnetic effects, which have been observed [110, 111] and which
have found many applications both in science and technology [112, 113], were not taken
into consideration. We also point out that thermal source is important in smart materials,
as was discussed for piezoelectric [114] and magnetoelectroelastic [115] materials under
the thermal source/loading in two dimension. A thermomagnetoelastic model was even
proposed for earthquake source mechanism study [116].

Obtained in this research are the induced electromagnetic fields for a uniaxial multi-
ferroic material and bimaterial subjected to a steady point heat source. In the course of
elaborating our method we establish electromagnetic characteristic constants, λ1 and λ2, to
parameterize the multiferroic behavior. Both the nondegenerate case, in which the heat con-
duction characteristic constant λ0 (the ratio of the transverse and axial thermal conductivity
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tensor elements) is different from the two electromagnetic characteristic constants λ1 and
λ2, and the degenerate case, in which the heat conduction characteristic constant λ0 is equal
to one of the two electromagnetic characteristic constants λ1 and λ2, are addressed. Once
the Green’s functions for a multiferroic full-space are known, the corresponding Green’s
functions for two bonded multiferroic half-spaces are obtained by the image method, with
the twelve unknown constants being determined by inverting a simple 4×4 matrix [47].

6.2 A steady point heat source in a homogeneous uniaxial
multiferroic material

The constitutive equations for a uniaxial multiferroic material with its unique axis along
the x3-axis can be written as[

D1
B1

]
=
[

ε11 α11
α11 µ11

][
E1
H1

] [
D2
B2

]
=
[

ε11 α11
α11 µ11

][
E2
H2

]
[

D3
B3

]
=
[

ε33 α33
α33 µ33

][
E3
H3

]
+
[

p
m

]
T

(6.1)

where Di and Bi (i=1,2,3) are the electric displacement and magnetic flux components (in
the x1-, x2-, and x3-directions); Ei and Hi are electric field and magnetic field components;
T is the temperature change; ε11 and ε33 are the two dielectric permittivity constants in the
x1- and x3-directions, respectively; α11 and α33 are the two magnetoelectric constants (in
the x1- and x3-directions); µ11 and µ33 are the two magnetic permeability constants (in the
x1- and x3-directions); and p and m are, respectively, the pyroelectric and pyromagnetic
constants (in the x3-direction).

The electric and magnetic fields are related to the electric potential φ and magnetic
potential ψ through the following 2×1 column matrix relation[

Ei
Hi

]
=−

[
φ,i
ψ,i

]
(6.2)

where the subscript comma “,” followed by the index i (i = 1,2,3) denotes the derivative
of the potential with respect to the coordinate xi.

In the absence of free electric and magnetic charges, the electric displacement Di and
magnetic flux Bi satisfy the following Gauss’ equations

∂D1

∂x1
+

∂D2

∂x2
+

∂D3

∂x3
= 0

∂B1

∂x1
+

∂B2

∂x2
+

∂B3

∂x3
= 0

(6.3)

Substituting Eq. (6.2) into Eq. (6.1), and then the results into Eq. (6.3), we finally arrive
at the following set of inhomogeneous partial differential equations for φ and ψ ,[

ε11 α11
α11 µ11

]( ∂ 2

∂x2
1
+ ∂ 2

∂x2
2

)
φ(

∂ 2

∂x2
1
+ ∂ 2

∂x2
2

)
ψ

+
[

ε33 α33
α33 µ33

] ∂ 2φ

∂x2
3

∂ 2ψ

∂x2
3

=
[

p
m

]
∂T
∂x3

(6.4)
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In addition we assume that a steady point heat source of strength Q is located at the
origin of a uniaxial multiferroic space. As a result the temperature T should satisfy the
following 3D Poisson’s equation

∂ 2T
∂x2

1
+

∂ 2T
∂x2

2
+

1
λ0

∂ 2T
∂x2

3
=− Q

k11
δ (x1)δ (x2)δ (x3), (6.5)

where δ () is the Dirac delta function; λ0 = k11/k33 is the dimensionless heat conduction
characteristic constant; and k11 and k33 are two heat conductivity constants (in the x1- and
x3-directions). It is obvious that for an isotropic thermal material, the heat conduction
characteristic constant λ0=1, whilst it can be larger or smaller than 1, depending whether
the strong direction of the heat conduction is along x1- or x3-direction. Eq. (6.5) can be
further expressed in the following standard form

∂ 2T
∂x2

1
+

∂ 2T
∂x2

2
+

∂ 2T

∂ (
√

λ0x3)
2 =−Q

k̃
δ (x1)δ (x2)δ (

√
λ0x3) (6.6)

where k̃ =
√

k11k33 can be considered as the effective heat conductivity. The solution to
Eq. (6.6) can be expediently given by

T =
Q

4π k̃
1√

x2
1 + x2

2 +λ0x2
3

. (6.7)

Inserting the above expression for the temperature T into Eq. (6.4), we arrive at

[
ε11 α11
α11 µ11

]( ∂ 2

∂x2
1
+ ∂ 2

∂x2
2

)
φ(

∂ 2

∂x2
1
+ ∂ 2

∂x2
2

)
ψ


+
[

ε33 α33
α33 µ33

] ∂ 2φ

∂x2
3

∂ 2ψ

∂x2
3

=− Q
√

λ0x3

4πk33(x2
1 + x2

2 +λ0x2
3)

3/2

[
p
m

]
(6.8)

In the following we will decouple the coupled inhomogeneous partial differential equa-
tions (6.8) using the eigenvalue approach [47]. We first consider the following eigenvalue
problem [47] ([

ε11 α11
α11 µ11

]
−λ

[
ε33 α33
α33 µ33

])
v =

[
0
0

]
(6.9)

The two eigenvalues λ1 and λ2, which are termed the electromagnetic characteristic
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constants, are given by [47]

λ1 =
µ33ε11 + µ11ε33−2α11α33

2(µ33ε33−α2
33)

+

√
(µ11ε33−µ33ε11)

2 +4(α11µ33−α33µ11)(α11ε33−α33ε11)

2(µ33ε33−α2
33)

λ2 =
µ33ε11 + µ11ε33−2α11α33

2(µ33ε33−α2
33)

−

√
(µ11ε33−µ33ε11)

2 +4(α11µ33−α33µ11)(α11ε33−α33ε11)

2(µ33ε33−α2
33)

(6.10)

and the two eigenvectors associated with λ1 and λ2 are

v1 =
[
−α11 +λ1α33

ε11−λ1ε33

]
v2 =

[
−α11 +λ2α33

ε11−λ2ε33

]
(6.11)

Since the two matrices on the left-hand side of Eq. (6.9) are real and symmetric, it
can be easily verified that the following orthogonal relationships with respect to the two
symmetric matrices hold [47][

vT
1

vT
2

][
ε33 α33
α33 µ33

][
v1 v2

]
=
[

δ1 0
0 δ2

]
[

vT
1

vT
2

][
ε11 α11
α11 µ11

][
v1 v2

]
=
[

λ1δ1 0
0 λ2δ2

] (6.12)

where

δ1 = α
2
11ε33 + ε

2
11µ33−2α11α33ε11 +(µ33ε33−α

2
33)(λ

2
1 ε33−2λ1ε11)

δ2 = α
2
11ε33 +κ

2
11µ33−2α11α33ε11 +(µ33ε33−α

2
33)(λ

2
2 ε33−2λ2ε11)

(6.13)

We now introduce two new functions f and g, which are related to φ and ψ through[
φ

ψ

]
= Φ

[
f
g

]
(6.14)

where Φ = [v1 v2].
In view of Eqs. (6.8), (6.12) and (6.14), the two new functions f and g satisfy the

following two independent 3D Poisson’s equations(
∂ 2

∂x2
1
+

∂ 2

∂x2
2
+

1
λ1

∂ 2

∂x2
3

)
f =

c1
√

λ0x3

(x2
1 + x2

2 +λ0x2
3)

3/2(
∂ 2

∂x2
1
+

∂ 2

∂x2
2
+

1
λ2

∂ 2

∂x2
3

)
g =

c2
√

λ0x3

(x2
1 + x2

2 +λ0x2
3)

3/2

(6.15)
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where the two constants c1 and c2 are given by

c1 =
Q [p(α11−λ1α33)−m(ε11−λ1ε33)]

4πk33δ1λ1

c2 =
Q [p(α11−λ2α33)−m(ε11−λ2ε33)]

4πk33δ2λ2

(6.16)

In the following we will discuss the solutions to Eq. (6.15) according to whether the heat
conduction characteristic constant λ0 is equal to one of the two electromagnetic character-
istic constants λ1 and λ2. We assume that the two electromagnetic characteristic constants
are distinct (which is true for a uniaixial material) in order to simplify our discussion. In
the case of isotropy where λ1 = λ2, a small perturbation can be utilized to separate the two
roots so that the solutions presented in this paper can still be utilized with neglected errors
[117].

6.2.1 The nondegenerate case: λ1 6=λ2 6=λ0

When λ1 6=λ2 6=λ0, it can be easily checked that the solutions to Eq. (6.15) can be written as

f = sign(x3)
[

d1 lnR∗1 +
λ1c1

λ1−λ0
lnR∗0

]
g = sign(x3)

[
d2 lnR∗2 +

λ2c2

λ2−λ0
lnR∗0

] (6.17)

where R∗i = Ri +
√

λi |x3| with Ri =
√

r2 +λix2
3, and r2 = x2

1 +x2
2 (i = 0,1,2); d1 and d2 are

two unknown constants; and the sign function is defined as follows

sign(x3) =

{
1 x3 > 0
−1 x3 < 0

(6.18)

Due to the fact that the electric and magnetic potentials φ and ψ should be continuous
across the plane x3 = 0, then we have φ = ψ = 0 (or, equivalently, f = g = 0) on x3 = 0 in
view of the fact that f and g are odd functions of x3. As a result it follows from Eq. (6.17)
that the two unknown constants d1 and d2 can be uniquely determined to be

d1 =− λ1c1

λ1−λ0
d2 =− λ2c2

λ2−λ0
(6.19)

Consequently the expressions of f and g can be finally given by

f =
λ1c1

λ1−λ0
sign(x3) ln

R∗0
R∗1

g =
λ2c2

λ2−λ0
sign(x3) ln

R∗0
R∗2

(6.20)
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The expressions of the electric and magnetic potentials φ and ψ are thus given by[
φ

ψ

]
= Φ

 λ1c1
λ1−λ0

sign(x3) ln R∗0
R∗1

λ2c2
λ2−λ0

sign(x3) ln R∗0
R∗2

 (6.21)

which can be written more explicitly as

φ =
λ1c1(λ1α33−α11)

λ1−λ0
sign(x3) ln

R∗0
R∗1

+
λ2c2(λ2α33−α11)

λ2−λ0
sign(x3) ln

R∗0
R∗2

ψ =
λ1c1(ε11−λ1ε33)

λ1−λ0
sign(x3) ln

R∗0
R∗1

+
λ2c2(ε11−λ2ε33)

λ2−λ0
sign(x3) ln

R∗0
R∗2

(6.22)

The electric and magnetic fields induced by the point heat source can then be deter-
mined as

E1 =
λ1c1(α11−λ1α33)

λ1−λ0
sign(x3)

(
x1

R0R∗0
− x1

R1R∗1

)
+

λ2c2(α11−λ2α33)
λ2−λ0

sign(x3)
(

x1

R0R∗0
− x1

R2R∗2

)
E2 =

λ1c1(α11−λ1α33)
λ1−λ0

sign(x3)
(

x2

R0R∗0
− x2

R1R∗1

)
+

λ2c2(α11−λ2α33)
λ2−λ0

sign(x3)
(

x2

R0R∗0
− x2

R2R∗2

)
E3 =

λ1c1(α11−λ1α33)
λ1−λ0

(√
λ0

R0
−
√

λ1

R1

)
+

λ2c2(α11−λ2α33)
λ2−λ0

(√
λ0

R0
−
√

λ2

R2

)
(6.23)

H1 =
λ1c1(λ1ε33− ε11)

λ1−λ0
sign(x3)

(
x1

R0R∗0
− x1

R1R∗1

)
+

λ2c2(λ2ε33− ε11)
λ2−λ0

sign(x3)
(

x1

R0R∗0
− x1

R2R∗2

)
H2 =

λ1c1(λ1ε33− ε11)
λ1−λ0

sign(x3)
(

x2

R0R∗0
− x2

R1R∗1

)
+

λ2c2(λ2ε33− ε11)
λ2−λ0

sign(x3)
(

x2

R0R∗0
− x2

R2R∗2

)
H3 =

λ1c1(λ1ε33− ε11)
λ1−λ0

(√
λ0

R0
−
√

λ1

R1

)
+

λ2c2(λ2ε33− ε11)
λ2−λ0

(√
λ0

R0
−
√

λ2

R2

)
(6.24)

It is observed from the above two expressions that the horizontal electric and magnetic
fields E1, E2, H1, H2 are odd functions of x3, and are zero on the horizontal plane x3 = 0.
On the other hand, the vertical electric and magnetic fields E3 and H3 are even functions

of x3, inversely proportional to r =
√

x2
1 + x2

2 on the horizontal plane x3 = 0, and are zero
on the x3-axis excluding the origin. The electric displacements and magnetic fluxes can be
determined by using Eq. (6.1) and the above two expressions.
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6.2.2 The degenerate case: λ1 = λ0 (λ1 6=λ2)
Next we address the degenerate case λ1 = λ0 (λ1 6=λ2). Applying the L’Hospital’s rule to
Eq. (6.21) when λ1→λ0 yields the expressions of the electric potential φ and magnetic
potential ψ as follows [

φ

ψ

]
= Φ

 −c1
√

λ0x3

2R0
λ2c2

λ2−λ0
sign(x3) ln R∗0

R∗2

 (6.25)

which can be written more explicitly as

φ =

√
λ0c1(α11−λ0α33)x3

2R0
+

λ2c2(λ2α33−α11)
λ2−λ0

sign(x3) ln
R∗0
R∗2

ψ =

√
λ0c1(λ0ε33− ε11)x3

2R0
+

λ2c2(ε11−λ2ε33)
λ2−λ0

sign(x3) ln
R∗0
R∗2

(6.26)

The electric and magnetic fields induced by the point heat source can then be deter-
mined as

E1 =

√
λ0c1(α11−λ0α33)x1x3

2R3
0

+
λ2c2(α11−λ2α33)

λ2−λ0
sign(x3)

(
x1

R0R∗0
− x1

R2R∗2

)
E2 =

√
λ0c1(α11−λ0α33)x2x3

2R3
0

+
λ2c2(α11−λ2α33)

λ2−λ0
sign(x3)

(
x2

R0R∗0
− x2

R2R∗2

)
E3 =

√
λ0c1(λ0α33−α11)r2

2R3
0

+
λ2c2(α11−λ2α33)

λ2−λ0

(√
λ0

R0
−
√

λ2

R2

) (6.27)

H1 =

√
λ0c1(λ0ε33− ε11)x1x3

2R3
0

+
λ2c2(λ2ε33− ε11)

λ2−λ0
sign(x3)

(
x1

R0R∗0
− x1

R2R∗2

)
H2 =

√
λ0c1(λ0ε33− ε11)x2x3

2R3
0

+
λ2c2(λ2ε33− ε11)

λ2−λ0
sign(x3)

(
x2

R0R∗0
− x2

R2R∗2

)
H3 =

√
λ0c1(ε11−λ0ε33)r2

2R3
0

+
λ2c2(λ2ε33− ε11)

λ2−λ0

(√
λ0

R0
−
√

λ2

R2

) (6.28)

Similar to the nondegenerate case, we also observe that, for the degenerate case, the hor-
izontal electric and magnetic fields are odd functions of x3, and are zero on the horizontal
plane x3 = 0. On the other hand, the vertical electric and magnetic fields are even functions
of x3, are inversely proportional to r when x3 = 0, and are zero on the x3 axis excluding
the origin. The electric displacements and magnetic fluxes can be similarly determined by
using Eq. (6.1) and the above two expressions.

Before ending this section, we add that the other degenerate case λ1 = λ0 (λ1 6=λ2) can
be discussed similarly. The results obtained in this section can be further applied to derive
the electromagnetic Green’s functions for a uniaxial multiferroic bimaterial induced by a
steady point heat source, which will be discussed in detail in the ensuing section.
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6.3 A steady point heat source in a homogeneous uniaxial
multiferroic bimaterial

In this section we investigate the electromagnetic fields in two bonded multiferroic half-
spaces induced by a steady point heat source. We assume that both half-spaces are uniaxial
multiferroic materials having the unique axis along the x3-axis, and that the interface x3 = 0
of the two multiferroic half-spaces are perfect. Namely, the temperature, electric potential,
magnetic potential, normal heat flux, normal electric displacement and normal magnetic
flux are all continuous across the interface x3 = 0. Without loss of generality, a steady
point heat source of strength Q is assumed to be located at x1 = x2 = 0, x3 = h (h > 0) in
the upper half-space of the multiferroic bimaterial. In the following the subscripts “1” and
“2” to vectors or matrices and the superscripts “(1)” and “(2)” to scalars are used to identify
the quantities in the upper and lower half spaces, respectively. In addition, we only consider
the nondegenerate case for the two multiferroic half-spaces in which the heat conduction
characteristic constant is different from the electromagnetic characteristic constants, i.e.,
λ

(i)
1 6= λ

(i)
2 6= λ

(i)
0 , (i = 1,2).

First, making use of the image method [47] and enforcing the continuity conditions of
temperature and normal heat flux across the interface x3 = 0, we arrive at the temperature
field in the uniaxial bimaterial as follows,

T (1) =
Q

4π k̃(1)
√

x2
1 + x2

2 +λ
(1)
0 (x3−h)2

+
Q(k̃(1)− k̃(2))

4π k̃(1)(k̃(1) + k̃(2))
√

x2
1 + x2

2 +λ
(1)
0 (x3 +h)2

(6.29a)

for x3 > 0, and

T (2) =
Q

2π(k̃(1) + k̃(2))

√
x2

1 + x2
2 +(

√
λ

(2)
0 x3−

√
λ

(1)
0 h)

2
(6.29b)

for x3 < 0.
It can be found that the electric and magnetic potentials in the bimaterial, induced by

the temperature field (6.29), take the following forms,

[
φ (1)

ψ(1)

]
= Φ 1

L10 lnR+
10 +L11 lnR+

11 +L12 lnR+
12 + λ

(1)
1 c1

λ
(1)
1 −λ

(1)
0

sign(x3−h) ln R∗0
R∗1

+ λ
(1)
1 e1

λ
(1)
1 −λ

(1)
0

lnR+
00

L20 lnR+
20 +L21 lnR+

21 +L22 lnR+
22 + λ

(1)
2 c2

λ
(1)
2 −λ

(1)
0

sign(x3−h) ln R∗0
R∗2

+ λ
(1)
2 e2

λ
(1)
2 −λ

(1)
0

lnR+
00


(6.30)

for x3 > 0, and

[
φ (2)

ψ(2)

]
= Φ 2

L30 lnR−10 +L31 lnR−11 +L32 lnR−12 + λ
(2)
1 e3

λ
(2)
1 −λ

(2)
0

lnR−00

L40 lnR−20 +L41 lnR−21 +L42 lnR−22 + λ
(2)
2 e4

λ
(2)
2 −λ

(2)
0

lnR−00

 (6.31)
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for x3 < 0, where Li j (i = 1,2,3,4, j = 0,1,2) are the unknown coefficients to be deter-
mined, and

R∗i =
√

x2
1 + x2

2 +λ
(1)
i (x3−h)2 +

√
λ

(1)
i |x3−h|

R+
i j =

√
x2

1 + x2
2 +(

√
λ

(1)
i x3 +

√
λ

(1)
j h)

2

+
√

λ
(1)
i x3 +

√
λ

(1)
j h

R−i j =

√
x2

1 + x2
2 +(

√
λ

(2)
i x3−

√
λ

(1)
j h)

2

+
√

λ
(1)
j h−

√
λ

(2)
i x3

(6.32)

where here i, j = 0,1,2. Furthermore, c1, c2, e1, e2, e3, e4 in Eq. (6.30) are given by

c1 =−
Q(p(1)Φ

(1)
11 +m(1)Φ

(1)
21 )

4πk(1)
33 δ

(1)
1 λ

(1)
1

c2 =−
Q(p(1)Φ

(1)
12 +m(1)Φ

(1)
22 )

4πk(1)
33 δ

(1)
2 λ

(1)
2

(6.33a)

e1 =
Q(k̃(2)− k̃(1))(p(1)Φ

(1)
11 +m(1)Φ

(1)
21 )

4πk(1)
33 δ

(1)
1 λ

(1)
1 (k̃(1) + k̃(2))

e2 =
Q(k̃(2)− k̃(1))(p(1)Φ

(1)
12 +m(1)Φ

(1)
22 )

4πk(1)
33 δ

(1)
2 λ

(1)
2 (k̃(1) + k̃(2))

(6.33b)

e3 =
Q
√

λ
(2)
0 (p(2)Φ

(2)
11 +m(2)Φ

(2)
21 )

2πδ
(2)
1 λ

(2)
1 (k̃(1) + k̃(2))

e4 =
Q
√

λ
(2)
0 (p(2)Φ

(2)
12 +m(2)Φ

(2)
22 )

2πδ
(2)
2 λ

(2)
2 (k̃(1) + k̃(2))

(6.33c)

with Φ
(i)
11 = λ

(i)
1 α

(i)
33 −α

(i)
11 , Φ

(i)
12 = λ

(i)
2 α

(i)
33 −α

(i)
11 , Φ

(i)
21 = ε

(i)
11 −λ1ε

(i)
33 , and Φ

(i)
22 = ε

(i)
11 −λ2ε

(i)
33

being the four components of Φ i.
Then, by enforcing the continuity conditions of the electric and magnetic potentials

as well as the normal electric displacement and normal magnetic flux across the interface
x3 = 0, the twelve unknowns Li j (i = 1,2,3,4, j = 0,1,2) can be uniquely determined to be


L10 L11 L12
L20 L21 L22
L30 L31 L32
L40 L41 L42

=


Φ

(1)
11 Φ

(1)
12 −Φ

(2)
11 −Φ

(2)
12

Φ
(1)
21 Φ

(1)
22 −Φ

(2)
21 −Φ

(2)
22

J(1)
11 J(1)

12 J(2)
11 J(2)

12

J(1)
21 J(1)

22 J(2)
21 J(2)

22


−1

ξ10 ξ11 ξ12
ξ20 ξ21 ξ22
ξ30 ξ31 ξ32
ξ40 ξ41 ξ42

 (6.34)

where

J(i)
11 =

√
λ

(i)
1 (ε(i)

33 Φ
(i)
11 +α

(i)
33 Φ

(i)
21), J(i)

12 =
√

λ
(i)
2 (ε(i)

33 Φ
(i)
12 +α

(i)
33 Φ

(i)
22)

J(i)
21 =

√
λ

(i)
1 (α(i)

33 Φ
(i)
11 + µ

(i)
33 Φ

(i)
21), J(i)

22 =
√

λ
(i)
2 (α(i)

33 Φ
(i)
12 + µ

(i)
33 Φ

(i)
22)

(6.35)
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where here i = 1,2 and

ξ10
ξ20
ξ30
ξ40

=



Φ
(1)
11 λ

(1)
1 (c1−e1)

λ
(1)
1 −λ

(1)
0

+ Φ
(1)
12 λ

(1)
2 (c2−e2)

λ
(1)
2 −λ

(1)
0

+ Φ
(2)
11 λ

(2)
1 e3

λ
(2)
1 −λ

(2)
0

+ Φ
(2)
12 λ

(2)
2 e4

λ
(2)
2 −λ

(2)
0

Φ
(1)
21 λ

(1)
1 (c1−e1)

λ
(1)
1 −λ

(1)
0

+ Φ
(1)
22 λ

(1)
2 (c2−e2)

λ
(1)
2 −λ

(1)
0

+ Φ
(2)
21 λ

(2)
1 e3

λ
(2)
1 −λ

(2)
0

+ Φ
(2)
22 λ

(2)
2 e4

λ
(2)
2 −λ

(2)
0

J(1)
11

√
λ

(1)
0 λ

(1)
1 (c1+e1)

λ
(1)
0 −λ

(1)
1

+
J(1)

12

√
λ

(1)
0 λ

(1)
2 (c2+e2)

λ
(1)
0 −λ

(1)
2

+
J(2)

11

√
λ

(2)
0 λ

(2)
1 e3

λ
(2)
0 −λ

(2)
1

+
J(2)

12

√
λ

(2)
0 λ

(2)
2 e4

λ
(2)
0 −λ

(2)
2

+ Q(p(2)−p(1))
2π(k̃(1)+k̃(2))

J(1)
21

√
λ

(1)
0 λ

(1)
1 (c1+e1)

λ
(1)
0 −λ

(1)
1

+
J(1)

22

√
λ

(1)
0 λ

(1)
2 (c2+e2)

λ
(1)
0 −λ

(1)
2

+
J(2)

21

√
λ

(2)
0 λ

(2)
1 e3

λ
(2)
0 −λ

(2)
1

+
J(2)

22

√
λ

(2)
0 λ

(2)
2 e4

λ
(2)
0 −λ

(2)
2

+ Q(m(2)−m(1))
2π(k̃(1)+k̃(2))


(6.36)

and 
ξ11 ξ12
ξ21 ξ22
ξ31 ξ32
ξ41 ξ42

=


−Φ

(1)
11 −Φ

(1)
21

−Φ
(1)
12 −Φ

(1)
22

J(1)
11 J(1)

21

J(1)
12 J(1)

22




λ
(1)
1 c1

λ
(1)
1 −λ

(1)
0

0

0 λ
(1)
2 c2

λ
(1)
2 −λ

(1)
0

 (6.37)

It is observed from Eq. (6.34) that the twelve unknowns Li j can be simply determined
by inverting a single 4× 4 matrix. This concise procedure is similar to that for the corre-
sponding isothermal case [47]. Once the electric and magnetic potentials in the multiferroic
bimaterial are obtained, the electric and magnetic fields as well as electric displacements
and magnetic fluxes can be found by taking the derivatives of the electric and magnetic
potentials.

6.4 Conclusions
The three-dimensional electromagnetic Green’s function solutions for a steady-state point
heat source in a uniaxial multiferroic material and bimaterial are derived. The Green’s
function expressions for a multiferroic full-space are given in Eqs. (6.22)–(6.24) for the
nondegenerate case λ1 6=λ2 6=λ0 and in Eqs. (6.26)–(6.28) for the degenerate case λ1 = λ0
(λ1 6=λ2). The electromagnetic fields induced by a steady point heat source at the origin of a
uniaxial multiferroic full-space with the x3-axis being its uniaxial axis exhibit the following
properties:

1. The electric and magnetic potentials as well as the horizontal electric and magnetic
fields (and as a result the horizontal electric displacements and magnetic fluxes) are
odd functions of x3, and are zero on the horizontal plane x3 = 0.

2. The vertical electric and magnetic fields (and as a result the vertical electric displace-
ments and magnetic fluxes) are even functions of x3, and are inversely proportional
to r when x3 = 0, and are zero on the x3-axis excluding the origin.

The Green’s function solutions for two bonded multiferroic half-spaces are presented in
Eqs. (6.30) and (6.31) with the twelve constants Li j being determined by Eq. (6.34). We
further remark that by making use of the image method discussed in Section 6.3, the point
heat source induced electromagnetic Green’s functions in a multiferroic half-space with

100



various surface electromagnetic boundary conditions [47] can also be derived, and that the
influence of the temperature on the electric and magnetic fields will be pursued using the
developed Green’s functions.
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Chapter 7

Effective Properties of Multilayered
Functionally Graded Multiferroic
Composites

7.1 Introduction
Functionally graded materials (FGMs) and composites possess various attractive properties
and have been the fields of intensive investigation. Recently, a first-order shear deformation
model was proposed for isotropic elastic FGM plate [118]. The structural stability of FGM
panels under aero-thermal loads [119] and dynamic stability of FGM cylindrical shells
under a period axial loading [120] were also studied numerically. While Chen et al. [121]
calculated the dispersion curves for an elastic FGM plate, Yang and Chen [122] analyzed
the free vibration and buckling of elastic FGM beams weakened by edge cracks. Besides
the elastic FGM structures, piezoelectric FGM structures were also investigated, as in [123]
where the transient piezothermoelastic behavior of an FGM thermopiezoelectric hollow
sphere was studied to demonstrate the influence of the FGMs on the field quantities.

Recently, the coupling between the magnetic and electric fields has attracted wide atten-
tion in composites as this is an intrinsic fascinating property in multiferroics [39, 106, 124].
This coupling, also called magnetoelectric (ME) effect, can be described as an induced
electric polarization under an external magnetic field or an induced magnetization under an
external electric field. It has been found that the ME effect in artificial multiferroic com-
posites consisting of ferromagnetic and ferroelectric phases, which is achieved through the
product property, can be several orders larger than that observed in natural single-phase
materials, such as the antiferromagnetic Cr2O3 crystal [39, 124–127]. Up to now sev-
eral approaches have been developed to predict the ME effect in multiferroic particulate
or laminate composites: (i) the micromechanics approach such as the Mori-Tanaka mean
field method, the dilute concentration method and the self-consistent method [128, 129];
(ii) the Green’s function method [130]; (iii) the method by Milgrom and Shtrikman for two-
phase fibrous composites, which establishes a correspondence between the uncoupled and
coupled problems [131, 132]; (iv) the method by Harshé for layered composites with 2–2
connectivity [44, 133–135]; (v) the equivalent circuit method (particularly for the analysis
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Figure 7.1: Multilayered multiferroic (2-2) composites. hk is the thickness of the kth layer,
and h is the total thickness of the composite.

of the resonance ME effect) [136, 137].
In this research we extend the micromechanics approach proposed by Qu and Cherkaoui

[138] to the study of the effective properties including the ME effect and the thermal prop-
erties of a magnetoelectric multiferroic multilayer composite with 2–2 connectivity of the
phases, as shown in Figure 7.1. We find that this micromechanics approach is rather ef-
ficient in the sense that: (i) explicit expressions of the effective properties of the layered
multiferroic composites can be obtained; (ii) the ME effect of the 2–2 type piezoelectric-
magnetostrictive films on an elastic substrate can be expediently investigated and the in-
fluence of the substrate on the ME response is found to be in qualitative agreement with
recent observations and calculations [106, 130, 139]; (iii) the ME effect of the multilayered
FGM multiferroic composites, which have recently been successfully fabricated [53], can
also be easily obtained.

7.2 Effective Properties of Multilayered Multiferroic Com-
posites

The linear constitutive equations of a homogeneous multiferroic material can be written as

σi j = Ci jklSkl− eki jEk−qki jHk−βi jθ

Dk = eki jSi j + εklEl +αklHl + pkθ

Bk = qki jSi j +αlkEl + µklHl +mkθ

(7.1)

where σi j and Si j are the stress and strain components; Di and Ei are the electric displace-
ment and electric fields; Bi and Hi are the magnetic flux and magnetic fields; θ is the tem-
perature change; Ci jkl , εkl and µkl are the elastic, the dielectric permittivity, and magnetic
permeability coefficients, respectively; eki j, qki j and αkl are the piezoelectric, piezomag-
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netic and magnetoelectric coefficients, respectively; βi j, pk and mk are the thermal stress,
pyroelectric and pyromagnetic coefficients, respectively.

If we define the following vector notations:

σ n =


σ33
σ23
σ13
D3
B3

 σ t =



σ11
σ22
σ12
D1
D2
B1
B2


Sn =


S33

2S23
2S13
−E3
−H3

 St =



S11
S22

2S12
−E1
−E2
−H1
−H2


(7.2)

then the constitutive equations (7.1) can be equivalently written the following concise ma-
trix form

σ n = CnnSn +CntSt−β
n
θ σ t = CtnSn +CttSt−β

t
θ (7.3)

where Cnn, Cnt , Ctn, and Ctt are the generalized Voigt matrices given by

Cnn = CT
nn =


C33 C34 C35 e33 q33
C34 C44 C45 e34 q34
C35 C45 C55 e35 q35
e33 e34 e35 −ε33 −α33
q33 q34 q35 −α33 −µ33

 (7.4)

Cnt =


C13 C23 C36 e13 e23 q13 q23
C14 C24 C46 e14 e24 q14 q24
C15 C25 C56 e15 e25 q15 q25
e31 e32 e36 −ε13 −ε23 −α31 −α32
q31 q32 q36 −α13 −α23 −µ13 −µ23

 , Ctn = CT
nt (7.5)

Ctt = CT
tt =



C11 C12 C16 e11 e21 q11 q21
C12 C22 C26 e12 e22 q12 q22
C16 C26 C66 e16 e26 q16 q26
e11 e12 e16 −ε11 −ε12 −α11 −α12
e21 e22 e26 −ε12 −ε22 −α21 −α22
q11 q12 q16 −α11 −α21 −µ11 −µ12
q21 q22 q26 −α12 −α22 −µ12 −µ22


(7.6)

β
n
=
[

β33 β23 β13 −p3 −m3
]T (7.7)

β
t
=
[

β11 β22 β12 −p1 −p2 −m1 −m2
]T (7.8)

with T denoting matrix transpose. It is observed that Cnn and Ctt are symmetric but not
positive definite. Now we consider a multiferroic multilayered composite consisting of N
layers of homogeneous multiferroic materials as shown in Fig. 1. In the following we
will attach a superscript “(k)” to the quantities associated with layer k (k = 1,2, . . .,N).
Therefore for the kth multiferroic layer, it follows from Eq. (7.1) that

σ
(k)
n = C(k)

nn S(k)
n +C(k)

nt S(k)
t −β

(k)
n

θ
(k) (7.9a)

σ
(k)
t = C(k)

tn S(k)
n +C(k)

tt S(k)
t −β

(k)
t

θ
(k) (7.9b)
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It is further assumed that: (i) each homogeneous layer is under a uniform state of de-
formation; (ii) the temperature is uniform over the whole representative volume element
(RVE); (iii) the layers are perfectly bonded together, i.e., tractions, normal electric dis-
placement, normal magnetic flux, displacements, electric potential and magnetic potential
are all continuous across the layer interface. Based on these assumptions, we then have

σ
(k)
n = σ n, S(k)

t = St , θ
(k) = θ , for k = 1,2, . . .,N (7.10)

In view of Eq. (7.10), Eq. (7.9a) can then be further cast into

S(k)
n = (C(k)

nn )−1
σ n− (C(k)

nn )−1C(k)
nt St +(C(k)

nn )−1
β

(k)
n

θ (7.11)

Taking the average of S(k)
n over the RVE, we obtain the following

Sn =
N

∑
k=1

vkS(k)
n =

N

∑
k=1

vk(C
(k)
nn )
−1

σ n−
N

∑
k=1

vk(C
(k)
nn )
−1

C(k)
nt St +

N

∑
k=1

vk(C
(k)
nn )
−1

β
(k)
n

θ (7.12)

where vk=hk/h is the volume fraction of the kth layer. By rearranging the terms in Eq. (7.12),
we arrive at

σ n = C̄nnSn + C̄ntSt− β̄
n
θ (7.13)

where

C̄nn =

[
N

∑
k=1

vk(C
(k)
nn )
−1
]−1

(7.14)

C̄nt = C̄nn

[
N

∑
k=1

vk(C
(k)
nn )
−1

C(k)
nt

]
(7.15)

β̄
n
= C̄nn

N

∑
k=1

vk(C
(k)
nn )
−1

β
(k)
n

(7.16)

Substitution of Eq. (7.11) into Eq. (7.9b) yields

σ
(k)
t = C(k)

tn (C(k)
nn )−1

σ n

+
[

C(k)
tt −C(k)

tn (C(k)
nn )
−1

C(k)
nt

]
St +

[
C(k)

tn (C(k)
nn )
−1

β
(k)
n
−β

(k)
t

]
θ (7.17)

Taking the average of σ
(k)
t over the RVE, we then obtain

σ t =
N

∑
k=1

vkσ
(k)
t =

N

∑
k=1

vkC(k)
tn (C(k)

nn )
−1

σ n

+
N

∑
k=1

vk

[
C(k)

tt −C(k)
tn (C(k)

nn )
−1

C(k)
nt

]
St +

N

∑
k=1

vk

[
C(k)

tn (C(k)
nn )
−1

β
(k)
n
−β

(k)
t

]
θ (7.18)
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Substitution of Eq. (7.13) into Eq. (7.18) results in

σ t = C̄tnSn + C̄ttSt− β̄
t
θ (7.19)

where

C̄tn =

[
N

∑
k=1

vkC(k)
tn (C(k)

nn )
−1
]

C̄nn (7.20)

C̄tt =
N

∑
k=1

vkC(k)
tt +

N

∑
k=1

vkC(k)
tn (C(k)

nn )
−1

(C̄nt−C(k)
nt ) (7.21)

β̄
t
=

N

∑
k=1

vkβ
(k)
t

+
N

∑
k=1

vkC(k)
tn (C(k)

nn )
−1

(β̄
n
−β

(k)
n

) (7.22)

It can be easily proved that the following symmetry properties exist

C̄nn = C̄T
nn C̄tt = C̄T

tt C̄tn = C̄T
nt (7.23)

Now the effective properties of the multilayered multiferroic composite have been com-
pletely determined. It is observed that the above derivations are basically an extension
of the approach proposed by Qu and Cherkaoui [138] to multiferroic composites includ-
ing also the thermal effect. Next we present three practical cases as applications of the
above formulas, which further demonstrate the efficiency and versatility of the proposed
approach.

7.3 Applications

7.3.1 Effective properties of a multiferroic composite composed of an
orthotropic piezoelectric phase and an orthotropic magnetostric-
tive phase

By using Eqs. (7.14)–(7.16) and (7.20)–(7.22), the effective properties of the orthotropic
piezoelectric-magnetostrictive bilayer composite as shown in Figure 7.2 can be explicitly
determined as follows.
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x1 

x3 

h 

Orthotropic magnetostrictive phase (m) hm 

Orthotropic piezoelectric phase (p) hp 

Figure 7.2: A multiferroic composite composed of an orthotropic piezoelectric phase and
an orthotropic magnetostrictive phase.

The nonzero components of C̄nn:

C̄33 =
1
∆

(
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ε
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33 C̃(p)
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+
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ε
(m)
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55 C(m)
55

vpC(m)
55 + vmC(p)

55
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∆ε
(p)
33 C̃(p)

33

(
vmC(m)

33

µ
(m)
33 C̃(m)

33

+
vp

µ
(p)
33

)

q̄33 =
vmq33
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∆
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µ
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mq2

33

(µ
(m)
33 )2(C̃(m)

33 )2

]

µ̄33 =
1
∆

[(
vp

C̃(p)
33

+
vm

C̃(m)
33

)(
vpC(p)
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ᾱ33 =−

vpvme33q33

ε
(p)
33 µ

(m)
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33 ∆

(7.24)

where C̃(p)
33 = C(p)

33 +e2
33/ε

(p)
33 and C̃(m)

33 = C(m)
33 +q2

33/µ
(m)
33 are respectively the piezoelectri-

cally and piezomagnetically stiffened elastic constants, and

∆ =

(
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+
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C̃(m)
33

)(
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(7.25)
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The nonzero components of C̄nt(= C̄T
tn):

C̄13 =
vp

[
C̄33(ε

(p)
33 C(p)

13 + e33e31)+ ē33(e33C(p)
13 − e31C(p)

33 )
]

ε
(p)
33 C̃(p)

33

+
vm

[
C̄33(µ

(m)
33 C(m)

13 +q33q31)+ q̄33(q33C(m)
13 −q31C(m)

33 )
]

µ
(m)
33 C̃(m)

33

C̄23 =
vp

[
C̄33(ε

(p)
33 C(p)

23 + e33e32)+ ē33(e33C(p)
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(7.26a)

ē24 =
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(7.26b)
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The nonzero components of C̄tt :
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ᾱ22 =−
vpvme24q24

vpC(m)
44 + vmC(p)

44

(7.27b)

109



The nonzero components of β̄
n
:

β̄33 =
vp

[
(ε(p)

33 C̄33 + e33ē33)β
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(7.28)
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x1 

x3 

h 

Orthotropic elastic substrate (s) hs 

Orthotropic piezoelectric phase (p) hp 

Orthotropic magnetostrictive phase (m) hm 

Figure 7.3: A multiferroic composite composed of an orthotropic piezoelectric phase, an
orthotropic magnetostrictive phase and an orthotropic elastic substrate.

The nonzero components of β̄
t
:
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(7.29)

It is of interest to point out that our numerical results for the multiferroic BaTiO3-
CoFe2O4 layered composite (the material properties of BaTiO3 and CoFe2O4 are taken
from Ref. 140) based on the above formulas are in agreement with Figures 3–5 in Ref. [129],
while the values of ME coefficient ᾱ11 are twice of those in Figure 2 of Ref. 129.

7.3.2 Effective properties of a multiferroic composite composed of an
orthotropic piezoelectric phase, an orthotropic magnetostrictive
phase, and an orthotropic elastic substrate

We next consider the orthotropic piezoelectric-magnetostrictive bilayer film on an orthotropic
elastic substrate, as shown in Figure 7.3. Here we are particularly interested in the influence
of the elastic substrate on the ME effect. Using Eqs. (7.14)–(7.16) and (7.20)–(7.22), we
can arrive at the following concise expressions for the three effective ME coefficients ᾱ11,
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ᾱ22, and ᾱ33

ᾱ11 =−
vpvme15q15
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(7.33)

It is observed from Eqs. (7.30)–(7.33) that the existence of the elastic substrate will
always cause a drop in the ME effect, which is in qualitative agreement with recent ob-
servations and calculations [106, 130, 139]. In order to demonstrate clearly the influence
of the substrate on the ME effect, we show in Figs. 4 and 5 the dependence of the ME
coefficients ᾱ11 and ᾱ33 on the BaTiO3 volume fraction v = vp/(vp + vm) for a series of
the substrate volume fraction v̄s = vs/(vp + vm). During the calculation the magnetostric-
tive phase is CoFe2O4, and the pertinent material properties of the elastic substrate are:
C(s)

33 = 195× 109N/m2, C(s)
44 = C(s)

55 = 65× 109N/m2, ε
(s)
33 = 9.6ε0, µ

(s)
33 = 10µ0. A dra-

matic, factor-of-2 decrease in ᾱ11 (see Figure 7.4) and a more dramatic, factor-of-3 de-
crease in ᾱ33 (see Figure 7.5) are observed when the BaTiO3-CoFe2O4 film is deposited
on the elastic substrate with a volume fraction of only 50% of the film. Further increase in
the substrate volume vs leads to continuous decreases in ᾱ11 and ᾱ33, and the ME coupling
eventually vanishes when the volume of the elastic substrate of volume is roughly 10 times
of the film volume.

7.3.3 Effective properties of a multiferroic composite composed of an
orthotropic FGM piezoelectric phase and an orthotropic FGM
magnetostrictive phase

Finally, we consider an orthotropic FGM piezoelectric phase located in the domain of 0≤
x3 ≤ hp which is perfectly bonded to an orthotropic FGM magnetostrictive phase located
in the domain of −hm ≤ x3 ≤ 0, as shown in Figure 7.6. Furthermore we assume that the
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Figure 7.4: Variation of the ME coefficient ᾱ11 vs. the BaTiO3 volume fraction for a
series of the substrate volume fraction v̄s. The multiferroic composite is composed of a
CoFe2O4–BaTiO3 bilayer on an elastic substrate.
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Figure 7.5: Variation of the ME coefficient ᾱ33 vs. the BaTiO3 volume fraction for a
series of the substrate volume fraction v̄s. The multiferroic composite is composed of a
CoFe2O4–BaTiO3 bilayer on an elastic substrate.
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x1 

x3 

h 

FGM orthotropic piezoelectric phase (p) hp 

FGM orthotropic magnetostrictive phase (m) hm 

Figure 7.6: A multiferroic composite composed of a functionally graded orthotropic piezo-
electric phase and a functionally graded orthotropic magnetostrictive phase.

material properties of the FGM piezoelectric and magnetostrictive phases vary along the
thickness direction as[

C(p)
i j (x3) ε

(p)
i j (x3) ei j(x3)

]
= f (x3)

[
C0(p)

i j ε
0(p)
i j e0

i j

]
(7.34)

for 0≤ x3 ≤ hp, and[
C(m)

i j (x3) µ
(m)
i j (x3) qi j(x3)

]
= g(x3)

[
C0(m)

i j µ
0(m)
i j q0

i j

]
(7.35)

for −hm ≤ x3 ≤ 0, where C0(p)
i j , ε

0(p)
i j , e0

i j, and C0(m)
i j , µ

0(m)
i j , q0

i j are the corresponding
material constants at x3 = 0. Apparently f (0) = g(0) = 1.

When calculating the effective properties, we can divide the two FGM phases into many
thin homogeneous layers. By using Eqs. (7.14)–(7.16) and (7.20)–(7.22) and taking the
limit (i.e., letting the thickness of the thin layer approach zero), the two in-plane effective
ME coefficients ᾱ11 and ᾱ22 can be finally derived as

ᾱ11 =−
vpvme0

15q0
15

C0(m)
55 h−1

∫ hp
0

dx
f (x) +C0(p)

55 h−1
∫ hm

0
dx

g(−x)

ᾱ22 =−
vpvme0

24q0
24

C(m)
44 h−1

∫ hp
0

dx
f (x) +C0(p)

44 h−1
∫ hm

0
dx

g(−x)

(7.36)

It is clear that one need only to carry out two line integrals in order to arrive at the two ME
coefficients.

In the following we consider two specific examples: (i) When both f (x3) and g(x3) are
linear functions of x3 described by

f (x3) = 1+λpx̃3 g(x3) = 1−λmx̃3 (7.37)

where λp >−1/vp, λm >−1/vm, x̃3 = x3/h, and λp and λm are two dimensionless material
constants. Then we have

ᾱ11 =−
vpvme0

15q0
15

λ
−1
p ln(1+λpvp)C

0(m)
55 +λ

−1
m ln(1+λmvm)C0(p)

55

ᾱ22 =−
vpvme0

24q0
24

λ
−1
p ln(1+λpvp)C

0(m)
44 +λ

−1
m ln(1+λmvm)C0(p)

44

(7.38)
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(ii) When both f (x3) and g(x3) are exponential functions of x3 described by

f (x3) = exp(λpx̃3) g(x3) = exp(−λmx̃3) (7.39)

then we have

ᾱ11 =−
vpvme0

15q0
15

λ
−1
p [1− exp(−λpvp)]C

0(m)
55 +λ

−1
m [1− exp(−λmvm)]C0(p)

55

ᾱ22 =−
vpvme0

24q0
24

λ
−1
p [1− exp(−λpvp)]C

0(m)
44 +λ

−1
m [1− exp(−λmvm)]C0(p)

44

(7.40)

We demonstrate in Figures 7.7 and 7.8 the ME coefficient ᾱ11 as a function of the BaTiO3
volume fraction vp and the gradient parameter λp for a linearly and exponentially varied
FGM BaTiO3 bonded to a homogeneous CoFe2O4 layer. During the calculation the mate-
rial properties of the FGM BaTiO3 at x3 = 0 are again taken from Ref. 140. It is observed
that for both linearly and exponentially varied FGM BaTiO3 the ME effect can be signif-
icantly enhanced when λp > 0 whilst it is reduced when λp < 0. It is also interesting to
observe from Figure 7.8 that the ME effect will reach a minimum when λp≤− 20 for an
exponentially varied FGM BaTiO3.

7.4 Conclusion
Theoretical modeling of the effective properties including the ME effect of multiferroic
2–2 connectivity composites has been rigorously developed based on the micromechanics
scheme originally proposed by Qu and Cherkaoui [138] for multilayered elastic compos-
ites. As applications we first presented the explicit expressions for all the effective mod-
uli of the multiferroic composite composed of an orthotropic piezoelectric phase and an
orthotropic magnetostrictive phase. We then derived the three effective ME coefficients
ᾱ11, ᾱ22, and ᾱ33 for the multiferroic composite composed of an orthotropic piezoelectric
phase, an orthotropic magnetostrictive phase and an orthotropic elastic substrate. Finally,
we presented the two in-plane effective ME coefficients ᾱ11 and ᾱ22 for the multiferroic
composite composed of an orthotropic FGM piezoelectric phase and an orthotropic FGM
magnetostrictive phase. In addition, for the reduced simple cases, our results are in agree-
ment with recent experimental observations and theoretical studies [106, 129, 130, 139].
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Figure 7.7: Variation of the ME coefficient ᾱ11 vs. the FGM BaTiO3 volume fraction
vp for a series gradient parameter λp with a linearly varied FGM BaTiO3 bonded to a
homogeneous CoFe2O4 layer.
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Figure 7.8: Variation of the ME coefficient ᾱ11 vs. the FGM BaTiO3 volume fraction vp
for a series gradient parameter λp with an exponentially varied FGM BaTiO3 bonded to a
homogeneous CoFe2O4 layer.
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Chapter 8

Two-Dimensional Green’s Functions in
Anisotropic Multiferroic Bimaterials
with a Viscous Interface

8.1 Introduction
Artificial multiferroic composites made of ferromagnetic and ferroelectric phases can ex-
hibit a magnetoelectric (ME) effect, which is absent in the constituents and which can
be several orders larger than that observed in natural single-phase multiferroic materials
[108, 124, 127, 132]. The ME effect in the multiferroic composite is achieved through the
product property: a magnetic field applied to the multiferroic composite will induce a strain
in the ferromagnetic phase which is passed through the interface to the ferroelectric phase,
where it induces an electric polarization. Thus the interface in multiferroic composites is
critical in achieving the ME effect. In fact it has been found that any imperfection or non-
ideal coupling at the interface will always cause a reduction in the ME effect in multiferroic
laminated or fibrous composites [108, 141, 142].

At elevated working temperatures exceeding about one-third of the homologous tem-
perature, mass transport becomes important along high diffusivity path such as interface
or grain boundary [143–146] suggested that the microscopically mass diffusion-controlled
mechanism can be macroscopically described by the linear law for a viscous interface:
δ̇ = τ/η , where δ̇ is the sliding velocity (i.e., the differentiation of the relative sliding with
respect to time t), τ is the interfacial shear stress and η is the interfacial viscosity which can
be determined experimentally and theoretically [145–149]. Furthermore the viscous inter-
face has been utilized to model incoherent interfaces between metal films and amorphous
substrates to quantitatively study dislocation core spreading in thin films [150]. There are
also plenty of cases in which the interface in multiferroic composites should be considered
as viscous. The direct bonding of PZT and Terfenol-D disks with conductive epoxy is one
of the most effective methods to achieve a giant ME response [108, 127]. The melting tem-
peratures of PZT and Terfenol-D are higher than 1100°K, while the melting temperature
of epoxy is only around 340–380°K [151]. If the multiferroic composite works at a room
temperature (say 300°K), then the interfacial bonding should be considered as viscous.
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Therefore, there is an urgent need to understand the potential effect of viscous interface on
the multiphase field quantities in multiferroic composites. This motivates us to introduce
the viscous interface into the anisotropic multiferroic composites and subsequently to study
the multi-field response in terms of the powerful and elegant Green’s function method.

This paper is structured as follows. In Section 8.2, the Stroh formalism suitable for
two-dimensional problems in generally anisotropic multiferroic materials in the presence
of viscous interface is presented. In Section 8.3, based on a novel approach, we present,
in terms of a unified formalism, the elegant time-dependent (quasi-static) Green’s function
solutions for an anisotropic magnetoelectroelastic multiferroic bimaterial with a viscous
interface subjected to an extended line force and an extended line dislocation located in the
upper half-plane. It is emphasized that the method proposed in this section is very simple
and concise, and it is technically more attractive than previous approaches. In Section
8.4, the derived exact closed-form Green’s functions are physically interpreted in terms
of the static and moving image singularities in the form of an extended line force and an
extended line dislocation. We derive in Section 8.5 the time-dependent image force for
the extended line dislocation due to its interaction with the nearby viscous interface. In
this section some special cases of the image force expressions are discussed in detail to
demonstrate the influence of the viscous interface on the mobility of the dislocation, and
certain important features are observed. We draw our conclusions in Section 8.6.

8.2 Basic Formulations
The basic equations for an anisotropic and linearly multiferroic material are [140]

σi j = Ci jkluk,l + eki jφ,k +qki jϕ,k

Dk = eki jui, j− εklφ,l−αlkϕ,l

Bk = qki jui, j−αklφ,l−µklϕ,l

σi j, j = 0 Di,i = 0 Bi,i = 0 where i, j,k, l = 1,2,3

(8.1)

where repeated indices mean summation, a comma follows by i stands for the derivative
with respect to the ithth spatial coordinate; ui, φ and ϕ are the elastic displacement, elec-
tric potential and magnetic potential; σi j, Di and Bi are the stress, electric displacement
and magnetic induction; Ci jkl , εi j and µi j are the elastic, dielectric and magnetic perme-
ability coefficients, respectively; ei jk, qi jk and αi j are the piezoelectric, piezomagnetic and
magnetoelectric coefficients, respectively.

For two-dimensional problems in which all quantities depend only on x1 and x2, one
can seek the solution in the form of

u =
[
u1 u2 u3 φ ϕ

]T = a f (x1 + px2, t), (8.2)

where (u1,u2) are the elastic displacements in the x1x2-plane and u3 is the anti-plane elastic
displacement perpendicular to the x1x2-plane; a is a constant vector; p is a complex number
or the Stroh eigenvalue; f (z, t) is an analytic function of the complex variable z and the real
time variable t. The appearance of the time t comes from the influence of the viscous
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interface under quasi-static deformation. It can be verified that all equations in (8.1) are
satisfied for an arbitrary analytic function f (z, t) if[

Q+ p(R+RT )+ p2T
]

a = 0 (8.3)

where the 5× 5 real matrix R and the two 5× 5 symmetric real matrices Q and T are
defined by

Q =

QE e11 q11
eT

11 −ε11 −α11
qT

11 −α11 −µ11

 R =

RE e21 q21
eT

12 −ε12 −α21
qT

12 −α12 −µ12


T =

TE e22 q22
eT

22 −ε22 −α22
qT

22 −α22 −µ22


(8.4)

where

(QE)ik = Ci1k1, (RE)ik = Ci1k2, (TE)ik = Ci2k2, (ei j)m = ei jm, (qi j)m = qi jm (8.5)

For a stable material with positive-definite energy density (elastic strain energy and
electromagnetic energy), the ten roots of Eq. (8.3) form five distinct conjugate pairs with
non-zero imaginary parts (see section 8.7). Let pi (where i = 1,2,3,4,5) be the five distinct
roots with positive imaginary parts and ai the associated eigenvectors, then the general
solution is given by

u =
[
u1 u2 u3 φ ϕ

]T = Af(z, t)+ Āf(z, t)

Φ =
[
Φ1 Φ2 Φ3 Φ4 Φ5

]T = Bf(z, t)+ B̄f(z, t)

bi = (RT + piT)ai =
−1
pi

(Q+ piR)ai, (i = 1−5)

A =
[
a1 a2 a3 a4 a5

]
, B =

[
b1 b2 b3 b4 b5

]
f(z, t) =

[
f1(z1, t) f2(z2, t) f3(z3, t) f4(z4, t) f5(z5, t)

]T
zi = x1 + pix2, Im{pi}> 0, (i = 1,2,3,4,5)

(8.6)

where the overbar denotes complex conjugate, and the extended stress function vector Φ is
defined, in terms of the stresses, electric displacements and magnetic inductions, as follows

σi1 =−Φi,2 σi2 = Φi,1 (i = 1,2,3)
D1 =−Φ4,2 D2 = Φ4,1

B1 =−Φ5,2 B2 = Φ5,1

(8.7)

In addition, the two matrices A and B satisfy the following normalized orthogonal relation-
ship [35] [

BT AT

B̄T ĀT

][
A Ā
B B̄

]
= I (8.8)

Furthermore, the following three real matrices S, H and L, which are called the Barnett-
Lothe tensors, can be introduced [35]

S = i(2ABT − I) H = 2iAAT L =−2iBBT (8.9)

with H and L being symmetric, and SH, LS, H−1S, SL−1 being anti-symmetric.
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8.3 General Solution for the Green’s Functions
Let us assume that the anisotropic multiferroic materials 1 and 2 occupy, respectively, the
half-planes x2 > 0 and x2 < 0. At the initial moment we introduce at the location [x̂1, x̂2],
(x̂2 > 0) in the upper half-plane an extended line force f̂ = [ f1 f2 f3 − fe − fm]T and an ex-
tended line dislocation b̂ = [b1 b2 b3 ∆φ ∆ϕ]T where bi (i = 1,2,3) are three displacement
jumps across the slip plane while ∆φ and ∆ϕ are jumps in electric potential and magnetic
potential. In the following, the superscripts “(1)” and “(2)” (or the subscripts 1 and 2 to
the vectors and matrices) will be used to identify the quantities in the upper and lower
half-planes, respectively. The two anisotropic multiferroic half-planes are bonded together
through a viscous interface at x2 = 0. The boundary conditions on the viscous interface
(where x2 = 0) can be expressed as [143, 152, 153]

σ
(1)
12 = σ

(2)
12 σ

(1)
22 = σ

(2)
22 σ

(1)
32 = σ

(2)
32 D(1)

2 = D(2)
2 B(1)

2 = B(2)
2

u(1)
1 = u(2)

1 u(1)
2 = u(2)

2 u(1)
3 = u(2)

3 φ
(1) = φ

(2)
ϕ

(1) = ϕ
(2)

(8.10)

for t = 0, and

σ
(1)
22 = σ

(2)
22 D(1)

2 = D(2)
2 B(1)

2 = B(2)
2

u(1)
2 = u(2)

2 φ
(1) = φ

(2)
ϕ

(1) = ϕ
(2)

σ
(1)
12 = σ

(2)
12 = η1(u̇

(1)
1 − u̇(2)

1 ) σ
(1)
32 = σ

(2)
32 = η3(u̇

(1)
3 − u̇(2)

3 )

(8.11)

for t > 0. An overdot denotes the derivative with respect to the time t; η1 and η3 are the
viscous coefficients in the x1 and x3 directions, respectively. Due to the fact that on the
interface x2 = 0 we have z1 = z2 = z3 = z4 = z5 = z, (z = x1 + ix2), then during the analysis
we can first replace zk, (k = 1,2,3,4,5) by the common complex variable z [153–155].
After the analysis is finished, we can then change z back to the corresponding complex
variables.

The above boundary conditions at the interface (where x2 = 0) can also be concisely and
equivalently expressed in terms of the extended displacement and extended stress function
vectors as

Φ 1 = Φ 2 u1 = u2 (8.12)

for t = 0, and
Φ 1 = Φ 2 u̇1− u̇2 = ΛΦ 2,1 (8.13)

for t > 0, where Λ is a 5×5 real and diagonal matrix defined by

Λ = diag
[
η
−1
1 0 η

−1
3 0 0

]
(8.14)

The boundary conditions at the interface x2 = 0 in Eq. (8.13) can further be expressed
in terms of the analytic function vectors f1(z, t) and f2(z, t) as

B1f+1 (x1, t)+ B̄1f̄−1 (x1, t) = B2f−2 (x1, t)+ B̄2f̄+2 (x1, t) (8.15)

A1ḟ+1 (x1, t)+ Ā1
˙̄f
−
1 (x1, t)

− A2ḟ−2 (x1, t)− Ā2
˙̄f
+
2 (x1, t) = Λ

[
B2f′−2 (x1, t)+ B̄2f̄′+2 (x1, t)

]
(8.16)
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Both of the above equations are for t > 0.
It follows from Eq. (8.15) that

f1(z, t) = B−1
1 B̄2f̄2(z, t)+ f0(z)−B−1

1 B̄1f̄0(z)

f̄1(z, t) = B̄−1
1 B2f2(z, t)+ f̄0(z)− B̄−1

1 B1f0(z)
(8.17)

where f0(z) is the analytic function vector in a homogeneous plane occupied by material 1
given by

f0(z) =
1

2πi
〈ln(z− ẑα)〉(AT

1 f̂+BT
1 b̂) (8.18)

with ẑα = x̂1 + pα x̂2, and 〈∗〉 a 5× 5 diagonal matrix in which each component is varied
according to the Greek index α (from 1 to 5).

Substituting the above expressions into Eq. (8.16) and eliminating f+1 (x1, t), f̄−1 (x1, t),
we finally obtain

N̄B̄2
˙̄f
+
2 (x1, t)− iΛ B̄2f̄′+2 (x1, t) = NB2ḟ−2 (x1, t)+ iΛB2f′−2 (x1, t) (8.19)

for t > 0 at the interface x2 = 0, where N is a 5×5 Hermitian matrix given by

N = M̄−1
1 +M−1

2 = L−1
1 +L−1

2 + i(S1L−1
1 −S2L−1

2 )

M−1
k = iAkB−1

k = (I− iSk)L−1
k (k = 1,2)

(8.20)

Due to the fact that N is a 5×5 Hermitian matrix, we can further write N as

N = N̄T =


N11 N12 N13 N14 N15
N̄12 N22 N23 N24 N25
N̄13 N̄23 N33 N34 N35
N̄14 N̄24 N̄34 N44 N45
N̄15 N̄25 N̄35 N̄45 N55

 (8.21)

It is apparent that the left-hand side of Eq. (8.19) is analytic in the upper half-plane,
while the right-hand side of Eq. (8.19) is analytic in the lower half-plane. Consequently the
continuity condition in Eq. (8.19) implies that the left- and right-hand sides of Eq. (8.19)
are identically zero in the upper and lower half-planes, respectively. It then follows that

NB2ḟ2(z, t)+ iΛB2f′2(z, t) = 0, Im{z}< 0 (8.22)

We next consider the following eigenvalue problem

(Λ −λN)v = 0 (8.23)

It is observed that in total there exist five eigenvalues to the above eigenvalue problem.
Furthermore, these five eigenvalues λi (i = 1,2,3,4,5) can be explicitly determined as

λ1 =
a1 +

√
a2

1−4a0a2

2a2
> 0

λ2 =
a1−

√
a2

1−4a0a2

2a2
> 0

λ3 = λ4 = λ5 = 0

(8.24)
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where

a2 = |N| , a1 =
_

N11

η1
+

_

N33

η3
, a0 =

1
η1η3

∣∣∣∣∣∣
N22 N24 N25
N̄24 N44 N45
N̄25 N̄45 N55

∣∣∣∣∣∣ , (8.25)

with
_

Ni j denoting the cofactors of the matrix N.
We specially choose the eigenvectors associated with the three zero eigenvalues λ3 =

λ4 = λ5 = 0 as

v3 =


0
1
0
0
0

 v4 =


0
−N24

0
N22
0

 v5 =


0

N24N45−N25N44
0

N25N̄24−N45N22
N22N44−N24N̄24

 (8.26)

so that the following orthogonal relationships with respect to the Hermitian matrix N and
to the real and diagonal matrix Λ hold:

Ψ̄
T NΨ = Λ 0 = diag

[
δ1 δ2 δ3 δ4 δ5

]
Ψ̄

T
ΛΨ = diag

[
λ1δ1 λ2δ2 λ3δ3 λ4δ4 λ5δ5

] (8.27)

where δk = v̄T
k Nvk (k = 1−5) are nonzero real values and

Ψ =
[
v1 v2 v3 v4 v5

]
(8.28)

In addition, due to the fact that v̄T
i Λvi = λiδi > 0 (i = 1,2), then δ1 and δ2 are positive.

Next we introduce the following new analytic function vector Ω(z, t)

B2f2(z, t) = ΨΩ(z, t) (8.29)

Employing the orthogonal relationship in Eq. (8.27), then Eq. (8.22) can be decoupled
into

Ω̇k(z, t)+ iλkΩ
′
k(z, t) = 0; k = 1,2,3,4,5; Im{z}< 0 (8.30)

whose solutions can be conveniently given by

Ωk(z, t) = Ωk(z− iλkt,0); k = 1,2,3,4,5; Im{z}< 0 (8.31)

The above expression indicates that once the initial state Ωk(z,0) is known, then one
only needs to replace the complex variable z by z− iλkt to arrive at the expression of
Ωk(z, t). In view of the fact that at the initial moment t = 0, the interface is a perfect one,
then we arrive at the following

f2(z,0) = 2B−1
2 N−1L−1

1 B1f0(z), Im{z}< 0 (8.32)

Consequently, it follows from Eq. (8.29) and the above expression that

Ω(z,0) = 2Ψ
−1N−1L−1

1 B1f0(z) =
1
πi

Ψ
−1N−1L−1

1 B1〈ln(z− ẑα)〉(AT
1 f̂+BT

1 b̂), Im{z}< 0 (8.33)

124



Therefore, we can conveniently write down the expression of Ω (z,t) as

Ω(z, t) =
1
πi

5

∑
k=1
〈ln(z− iλαt− ẑk)〉Ψ−1N−1L−1

1 B1Ik(AT
1 f̂+BT

1 b̂), Im{z}< 0 (8.34)

where

I1 = diag
[
1 0 0 0 0

]
, I2 = diag

[
0 1 0 0 0

]
, I3 = diag

[
0 0 1 0 0

]
I4 = diag

[
0 0 0 1 0

]
, I5 = diag

[
0 0 0 0 1

]
(8.35)

Substituting the above into Eq. (8.29), and then the results into Eq. (8.17), we can obtain
the two analytic function vectors f1(z, t) and f2(z, t) as

f2(z, t) =
1
πi

5

∑
k=1

B−1
2 Ψ〈ln(z− iλαt− ẑk)〉Ψ−1N−1L−1

1 B1Ik(AT
1 f̂+BT

1 b̂) (8.36)

for Im{z}< 0, and

f1(z, t) =− 1
πi

5

∑
k=1

B−1
1 Ψ̄〈ln(z+ iλαt +¯̂zk)〉Ψ̄

−1N̄−1L−1
1 B̄1Ik(ĀT

1 f̂+ B̄T
1 b̂)

+
1

2πi
B−1

1 B̄1〈ln(z−¯̂zα)〉(ĀT
1 f̂+ B̄T

1 b̂)+
1

2πi
〈ln(z− ẑα)〉(AT

1 f̂+BT
1 b̂) (8.37)

for Im{z}> 0.
The above expressions are in fact only valid along the x1-axis. We can further write

down the full-field expressions of f1(z,t) and f2(z,t) as

f1(z, t) =− 1
πi

5

∑
m=1

5

∑
k=1
〈ln(zα + iλmt−¯̂zk)〉B−1

1 Ψ̄ImΛ
−1
0 Ψ

T L−1
1 B̄1Ik(ĀT

1 f̂+ B̄T
1 b̂)

+
1

2πi

5

∑
k=1
〈ln(zα −¯̂zk)〉B−1

1 B̄1Ik(ĀT
1 f̂+ B̄T

1 b̂)+
1

2πi
〈ln(zα − ẑα)〉(AT

1 f̂+BT
1 b̂) (8.38)

for x2 > 0, and

f2(z, t) =
1
πi

5

∑
m=1

5

∑
k=1
〈ln(z∗α − iλmt− ẑk)〉B−1

2 ΨImΛ
−1
0 Ψ̄

T L−1
1 B1Ik(AT

1 f̂+BT
1 b̂) (8.39)

for x2 < 0, where the superscript ‘*’ is utilized to distinguish the Stroh eignvalues associated
with the lower half-plane (z∗α ) from those associated with the upper half-plane (zα ). One
can observe that the derived time-dependent multiferroic Green’s function solutions (8.38)
and (8.39) are even more concise and elegant than previously obtained ones for the purely
elastic bimaterial [153]. Substitution of Eqs. (8.38) and (8.39) into Eq.(8.6) will yield
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the expressions of u and Φ . For example, the tractions, normal electric displacement and
normal magnetic induction are distributed along the interface x2 = 0 as[

σ12 σ22 σ32 D2 B2
]T =

2
π

Im

{
5

∑
m=1

ΨImΛ
−1
0 Ψ̄

T L−1
1 B1 <

1
x1− iλmt− ẑα

> (AT
1 f̂+BT

1 b̂)

}
, (8.40)

for −∞ < x1 < +∞, t ≥ 0.
It also follows from Eqs. (8.38) and (8.39) that at the initial moment t = 0,

f1(z,0) =
1

2πi

5

∑
k=1
〈ln(zα −¯̂zk)〉B−1

1 (I−2N̄−1L−1
1 )B̄1Ik(ĀT

1 f̂+ B̄T
1 b̂)

+
1

2πi
〈ln(zα − ẑα)〉(AT

1 f̂+BT
1 b̂)

(8.41)

for x2 > 0, and

f2(z,0) =
1
πi

5

∑
k=1
〈ln(z∗α − ẑk)〉B−1

2 N−1L−1
1 B1Ik(AT

1 f̂+BT
1 b̂), (8.42)

for x2 < 0, which are just the bimaterial Green’s functions with a perfect interface derived
by [156]. On the other extreme case when t→∞, we have

f1(z,∞) =
1

2πi

5

∑
k=1
〈ln(zα −¯̂zk)〉B−1

1
[
I−2Ψ̄(I3 + I4 + I5)Λ−1

0 Ψ
T L−1

1
]

B̄1Ik(ĀT
1 f̂+ B̄T

1 b̂)

+
1

2πi
〈ln(zα − ẑα)〉(AT

1 f̂+BT
1 b̂)

(8.43)
for x2 > 0, and

f2(z,∞) =
1
πi

5

∑
k=1
〈ln(z∗α − ẑk)〉B−1

2 Ψ(I3 + I4 + I5)Λ−1
0 Ψ̄

T L−1
1 B1Ik(AT

1 f̂+BT
1 b̂) (8.44)

for x2 < 0, which are the results for a free-sliding interface on which the two shear stresses
are zero.

We add that the method presented in this paper is not limited to the Green’s functions
for an extended line force and an extended line dislocation. It can also be easily adopted
to derive Green’s functions for other types of singularities, such as concentrated couples
and line heat sources once the Green’s functions due to these singularities for a perfect
bimaterial interface are known.

8.4 Image Singularities
Here it is of particular interest to look into the physical meanings of the obtained Green’s
function solutions (8.38) and (8.39). The last term on the right-hand side of Eq. (8.38)
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represents the Green’s function for an infinite multiferroic space with singularities in the
form of an extended line force f̂ and an extended line dislocation b̂ located at [x1,x2] =
[x̂1, x̂2]. In the following we will demonstrate that (i) the first and second terms on the right-
hand side of Eq. (8.38) represent fifty time-dependent and twenty five time-independent
Green’s functions for the infinite space occupied by material 1 whose singularities are also
in the form of an extended line force and an extended line dislocation located in x2 < 0, and
(ii) Eq. (8.39) represents fifty time-dependent and twenty five time-independent Green’s
functions for the infinite space occupied by material 2 whose singularities are also in the
form of an extended line force and an extended line dislocation located in x2 > 0.

The moving singularities of the first term in Eq. (8.38) are located at

zn + iλkt− ¯̂zm = x1 + pnx2 + iλkt− x̂1− p̄mx̂2 = 0 (8.45)

where n,m = 1,2,3,4,5;k = 1,2, while the static singularities of the first and second terms
in Eq. (8.38) are located at

zn− ¯̂zm = x1 + pnx2− x̂1− p̄mx̂2 = 0 (8.46)

where n,m = 1,2,3,4,5. We let p′, p′′ be, respectively, the real and imaginary parts of
p. If we equal the real and imaginary parts of Eqs. (8.45) and (8.46), then the locations
[xnmk

1 (t),xnmk
2 (t)] of the moving singularities and the locations [xnm

1 ,xnm
2 ] of the static singu-

larities for the upper half-plane are found to be

xnmk
1 (t) = x̂1 +

λk p′nt +(p′n p′′m + p′m p′′n)x̂2

p′′n
xnmk

2 (t) =−λkt + p′′mx̂2

p′′n
(8.47)

where n,m = 1,2,3,4,5;k = 1,2, and

xnm
1 = x̂1 +

(p′n p′′m + p′m p′′n)x̂2

p′′n
xnm

2 =− p′′mx̂2

p′′n
, (8.48)

where n,m = 1,2,3,4,5.
Due to the fact that p′′n, p′′m,λk > 0, then [xnmk

1 (t),xnmk
2 (t)] and [xnm

1 ,xnm
2 ] exist, and also

xnmk
2 (t) < 0 and xnm

2 < 0, which means that the moving and static image singularities for
the upper half-plane are always located in the lower half-plane. In addition it is observed
from Eq. (8.47) that the moving image singularities for the upper half-plane move further
away from the interface as the time evolves.

The moving image singularities in Eq. (8.39) are located at

z∗n− iλkt− ẑm = x1 + p∗nx2− iλkt− x̂1− pmx̂2 = 0 (8.49)

where n,m = 1,2,3,4,5;k = 1,2, while the static singularities in Eq. (8.39) are located at

z∗n− ẑm = x1 + p∗nx2− x̂1− pmx̂2 = 0 (8.50)

where n,m = 1,2,3,4,5. Equating the real and imaginary parts of Eqs. (8.49) and (8.50),
the locations [x∗nmk

1 (t),x∗nmk
2 (t)] of the moving singularities and the locations [x∗nm

1 ,x∗nm
2 ]

of the static singularities for the lower half-plane are

x∗nmk
1 (t) = x̂1−

λk(p′n)
∗t +(p′n)

∗p′′m− p′m(p′′n)
∗)x̂2

(p′′n)∗
x∗nmk

2 (t) =
λkt + p′′mx̂2

(p′′n)∗
(8.51)
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where n,m = 1,2,3,4,5;k = 1,2, and

x∗nm
1 = x̂1−

((p′n)
∗p′′m− p′m(p′′n)

∗)x̂2

(p′′n)∗
x∗nm

2 =
p′′mx̂2

(p′′n)∗
, (8.52)

where n,m = 1,2,3,4,5.
Due to the fact that (p′′n)

∗, p′′m,λk > 0, then [x∗nmk
1 (t),x∗nmk

2 (t)] and [x∗nm
1 ,x∗nm

2 ] exist, and
also x∗nmk

2 (t) > 0 and x∗nm
2 > 0, which means that the moving and static image singularities

for the lower half-plane are always located in the upper half-plane. In addition it is observed
from Eq. (8.51) that the moving image singularities for the lower half-plane also move
further away from the interface as the time evolves.

Based on the previous results, we can further write Eqs. (8.38) and (8.39) into the
following equivalent forms:

f1(z, t) =
1

2πi

5

∑
n=1

5

∑
m=1

2

∑
k=1
〈ln[zα − znmk

α (t)]〉(AT
1 f̂nmk +BT

1 b̂nmk)

+
1

2πi

5

∑
n=1

5

∑
m=1
〈ln(zα − znm

α )〉(AT
1 f̂nm +BT

1 b̂nm)

+
1

2πi
〈ln(zα − ẑα)〉(AT

1 f̂+BT
1 b̂)

(8.53)

for x2 > 0, and

f2(z, t) =
1

2πi

5

∑
n=1

5

∑
m=1

2

∑
k=1
〈ln[z∗α − z∗nmk

α (t)]〉(AT
2 f̂∗nmk +BT

2 b̂∗nmk)

+
1

2πi

5

∑
n=1

5

∑
m=1
〈ln(z∗α − z∗nm

α )〉(AT
2 f̂∗nm +BT

2 b̂∗nm)

(8.54)

for x2 < 0, where

znmk
α (t) = xnmk

1 (t)+ pαxnmk
2 (t)

znm
α = xnm

1 + pαxnm
2

(8.55)

z∗nmk
α (t) = x∗nmk

1 (t)+ p∗αx∗nmk
2 (t)

z∗nm
α = x∗nm

1 + p∗αx∗nm
2

(8.56)

where n,m = 1,2,3,4,5;k = 1,2, and

f̂nmk =−4Re
{

B1InB−1
1 Ψ̄IkΛ

−1
0 Ψ

T L−1
1 B̄1Im(ĀT

1 f̂+ B̄T
1 b̂)
}

b̂nmk =−4Re
{

A1InB−1
1 Ψ̄IkΛ

−1
0 Ψ

T L−1
1 B̄1Im(ĀT

1 f̂+ B̄T
1 b̂)
}

f̂nm = 2Re
{

B1InB−1
1
[
I−2Ψ̄(I3 + I4 + I5)Λ−1

0 Ψ
T L−1

1
]

B̄1Im(ĀT
1 f̂+ B̄T

1 b̂)
}

b̂nm = 2Re
{

A1InB−1
1
[
I−2Ψ̄(I3 + I4 + I5)Λ−1

0 Ψ
T L−1

1
]

B̄1Im(ĀT
1 f̂+ B̄T

1 b̂)
}

(8.57)
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f̂∗nmk = 4Re
{

B2InB−1
2 ΨIkΛ

−1
0 Ψ̄

T L−1
1 B1Im(AT

1 f̂+BT
1 b̂)
}

b̂∗nmk = 4Re
{

A2InB−1
2 ΨIkΛ

−1
0 Ψ̄

T L−1
1 B1Im(AT

1 f̂+BT
1 b̂)
}

f̂∗nm = 4Re
{

B2InB−1
2 Ψ(I3 + I4 + I5)Λ−1

0 Ψ̄
T L−1

1 B1Im(AT
1 f̂+BT

1 b̂)
}

b̂∗nm = 4Re
{

A2InB−1
2 Ψ(I3 + I4 + I5)Λ−1

0 Ψ̄
T L−1

1 B1Im(AT
1 f̂+BT

1 b̂)
}

(8.58)

The first term in Eq. (8.53) represents fifty time-dependent Green’s functions with
singularities located at [xnmk

1 (t),xnmk
2 (t)]. These moving image singularities consist of

an extended line force f̂nmk and an extended line dislocation b̂nmk. The second term in
Eq. (8.53) represents twenty five time-independent Green’s functions with singularities lo-
cated at [xnm

1 ,xnm
2 ]. These static image singularities consist of an extended line force f̂nm

and an extended line dislocation b̂nm. The first term in Eq. (8.54) represents fifty time-
dependent Green’s functions with singularities located at [x∗nmk

1 (t),x∗nmk
2 (t)]. These mov-

ing image singularities consist of an extended line force f̂∗nmk and an extended line dis-
location b̂∗nmk. The second term in Eq. (8.54) represents twenty five time-independent
Green’s functions with singularities located at [x∗nm

1 ,x∗nm
2 ]. These static image singu-

larities consist of an extended line force f̂∗nm and an extended line dislocation b̂∗nm. In
addition all the moving singularities originate from the locations of the static singulari-
ties due to the fact that xnmk

1 (0) = xnm
1 , xnmk

2 (0) = xnm
2 , x∗nmk

1 (0) = x∗nm
1 , and x∗nmk

2 (0) =
x∗nm

2 by noticing Eqs. (8.47), (8.48), (8.51) and (8.52). It can be easily checked from
Eq. (8.57) that the total extended force due to the moving and static image singularities
∑

5
n=1 ∑

5
m=1 ∑

2
k=1 f̂nmk +∑

5
n=1 ∑

5
m=1 f̂nm and the total extended dislocation due to the moving

and static image singularities ∑
5
n=1 ∑

5
m=1 ∑

2
k=1 b̂nmk + ∑

5
n=1 ∑

5
m=1 b̂nm for the upper half-

plane are exactly the same as those for a perfect interface. Similarly it can be easily checked
from Eq. (8.58) that the total extended force due to the moving and static image singular-
ities ∑

5
n=1 ∑

5
m=1 ∑

2
k=1 f̂∗nmk + ∑

5
n=1 ∑

5
m=1 f̂∗nm and the total extended dislocation due to the

moving and static image singularities ∑
5
n=1 ∑

5
m=1 ∑

2
k=1 b̂∗nmk +∑

5
n=1 ∑

5
m=1 b̂∗nm for the lower

half-plane are also exactly the same as those for a perfect interface.
In summary, twenty five static image singularities and fifty moving image singulari-

ties, which originate from the locations of the static image singularities, in the form of an
extended line force and an extended line dislocation for the upper or the lower half-plane
are needed to exactly satisfy the boundary conditions on a viscous interface. For a per-
fect interface only the twenty five static image singularities are needed (and in the context
of pure elasticity, the number is reduced to nine [157]). In addition it is observed from
Eqs. (8.47) and (8.48) that the locations of the twenty five image singularities for the upper
half-plane are independent of the property of the lower half-plane, while the locations of
the fifty moving image singularities are reliant on the properties of both half-planes as well
as the viscous coefficients. It is found from Eqs. (8.51) and (8.52) that the locations of
all the static and moving image singularities for the lower half-plane are dependent on the
properties of both half-planes as well as the viscous coefficients.

The discussions presented in this section are restricted to mathematically non-degenerate
materials. It is expected that for degenerate materials such as the isotropic material the
static and moving image singularities are not simply concentrated forces and dislocations.
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For the mathematically degenerate materials, some of the twenty five static image singulari-
ties may coalesce into one static singularity and some of the fifty moving singularities may
also converge into one moving singularity, resulting in static and moving double-forces,
concentrated couples and other higher-order singularities. It should be pointed out that
even though the image singularity discussions for an isotropic elastic half-plane and for an
isotropic elastic bimaterial with a perfect interface have been carried out [158, 159], the
corresponding discussions for an isotropic elastic bimaterial with a viscous interface is still
unavailable.

8.5 Time-Dependent Image Force on an Extended Line
Dislocation

Here we are also much interested in the image force on the extended line dislocation b̂
(with f̂ = 0) due to its interaction with the nearby viscous interface. By using the Peach-
Koehler formulation [35, 151, 160], the time-dependent image force acting on the extended
line dislocation can be finally derived as

F2(t) =
b̂T

4π x̂2

[
2Re

{
N−1}−L1−2

5

∑
n=1

5

∑
m=1

2

∑
k=1

Re
{

Ynmk
λkt

λkt + i(p̄n− pm)x̂2

}]
b̂

F1(t) = 0
(8.59)

where F1 and F2 are respectively the components of the image force along the x1 and x2
directions, and

Ynmk = ȲT
mnk = (B̄1InB̄−1

1 )(ΨIkΛ
−1
0 Ψ̄

T )(B1ImB−1
1 )T

= (B̄1InB̄−1
1 )
(

vkv̄T
k

δk

)
(B1ImB−1

1 )T
(8.60)

It is observed that the term in the square brackets on the right-hand side of Eq. (8.59) is
a 5×5 time-dependent real and symmetric matrix. In the following we look into the above
image force expression in more detail.

8.5.1 Isotropic elastic bimaterials
First it should be stressed that Eq. (8.45) is still valid for any kind of mathematically degen-
erate materials such as the isotropic elastic material. For example if we assume that both
half-planes are isotropic elastic, then p1 = p2 = p3 = p4 = p5 = i. Consequently we have

F2(t) =
b̂T

4π x̂2

[
2Re

{
N−1}−L1−2

2

∑
k=1

λkt
λkt +2x̂2

Re
(

vkv̄T
k

δk

)]
b̂. (8.61)

Due to the fact that the Barnett-Lothe tensors S, H and L for isotropic elastic materials
are well known [35], then it is not difficult to determine the explicit value of the above
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expression for an elastic dislocation b̂ = [b1 b2 b3 0 0]T as

F2(t) =
µ1

4π x̂2(1−ν1)(1−β 2)

[
(α +β

2)(b2
1 +b2

2)−
t(α +1)
t +2t1

(b2
1 +β

2b2
2)
]

+
µ1b2

3
4π x̂2

(
µ2−µ1

µ1 + µ2
− t

t +2t2

2µ2

µ1 + µ2

) (8.62)

where α and β are Dundurs constants given by

α =
µ2(1−ν1)−µ1(1−ν2)
µ2(1−ν1)+ µ1(1−ν2)

β =
µ2(1−2ν1)−µ1(1−2ν2)
2 [µ2(1−ν1)+ µ1(1−ν2)]

, (8.63)

with µi and νi (i = 1,2) being the shear moduli and Poisson’s ratios, and t1 and t2 being
two relaxation times given by

t1 =
x̂2

λ1
=

2x̂2η1(1−ν1)(1−β 2)
µ1(α +1)

t2 =
x̂2

λ2
=

x̂2η3(µ1 + µ2)
µ1µ2

(8.64)

If η1 = η3 and 0 < νi ≤ 1/2, then it can be easily found that t1 < t2. In addition F2(t) is
a monotonically decreasing function of t. It is observed that the second term in Eq. (8.62)
gives the time-dependent image force due to a screw dislocation b3, which is in agreement
with the recent result by Wang and Pan [161]. However, the first term in Eq. (8.62) gives the
time-dependent image force due to an edge dislocation with Burgers vector (b1,b2), which
is new in the literature. At t = 0, the first term in Eq. (8.62) is the same as that obtained
by Dundurs & Sendeckyj [162] for a perfect interface (also see Ref. 35). It is observed that
the first term in Eq. (8.62) depends not only on b2

1 +b2
2 but also on b2

1 +β 2b2
2, thus it varies

with the direction of the vector (b1, b2). This observation is different from the invariant
phenomenon for a perfect interface [35]. When t→∞, Eq. (8.62) becomes

F2(∞) =−
µ1
[
b2

1−αb2
2 +(1−ν1)b2

3
]

4π x̂2(1−ν1)
(8.65)

which can be reduced to that derived by Chen et al. [163, eq. (27)] for an edge dislocation
(b3 = 0) interacting with a free-sliding interface on which the two shear stresses σ12 and
σ32 are zero. In addition if the two isotropic elastic half-planes possess the same material
properties, i.e., µ1 = µ2 = µ , ν1 = ν2 = ν , then Eq. (8.62) is further reduced to

F2(t) =− µt
4π x̂2

[
b2

1
(1−ν)(t +2t1)

+
b2

3
t +2t2

]
≤ 0, (8.66)

where

t1 =
2x̂2η1(1−ν)

µ
t2 =

2x̂2η3

µ
(8.67)

Equation (8.66) implies that the elastic dislocation is always attracted to the viscous
interface at any nonzero time, and that the image force will always be null if the dislocation
only contains the b2 component.
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8.5.2 Transversely isotropic multiferroic bimaterials
Here we consider a practical situation in which the two multiferroic half-planes are both
transversely isotropic, with x1x2-plane being the isotropic plane. If the extended line dislo-
cation contains only the b1 and b2 components, then the result is identical to that presented
in the previous subsection due the fact that the x1x2-plane is an isotropic plane. We thus
consider the two multiferroic half-planes with a screw dislocation b̂ = [0 0 b3 ∆φ ∆ϕ]T . In
this case, it follows from Eq. (8.59) that

F2(t) =
1

4π x̂2

[
bT

0

(
4t0

t +2t0
E−1−C1

)
b0 +

2t
t +2t0

b̃T
0 Mb̃0

]
, (8.68)

where

C =

C44 e15 q15
e15 −ε11 −α11
q15 −α11 −µ11

 E =

E11 E12 E13
E12 E22 E23
E13 E23 E33

≡ C−1
1 +C−1

2

M =
[

E22 E23
E23 E33

]−1

(8.69)

b0 =
[
b3 ∆φ ∆ϕ

]T b̃0 =
[
∆φ ∆ϕ

]T (8.70)

and t0 is a relaxation time defined by

t0 =
x̂3η3 |E|

E22E33−E2
23

> 0 (8.71)

8.5.3 Relaxation time
It is observed from the previous two subsections that two positive real relaxation times
are inherent in the time-dependent image force expression for an extended line dislocation
interacting with a viscous interface between two isotropic elastic half-planes or between
two transversely isotropic multiferroic half-planes. For a generally anisotropic multiferroic
bimaterial with a viscous interface, if we introduce the following relaxation times

tnmk = t̄mnk = i(p̄n− pm)/(2λk), (n,m = 1,2,3,4,5, k = 1,2) (8.72)

then Eq. (8.59) can be further expressed in terms of these relaxation times as

F2(t) =
b̂T

4π x̂2

[
2Re

{
N−1}−L1−2

5

∑
n=1

5

∑
m=1

2

∑
k=1

Re
{

Ynmk
t

t +2tnmk

}]
b̂. (8.73)

It is observed from Eq. (8.72) that there exist in total as many as 50 relaxation times,
among which ten are positive real while the other forty are complex with positive real
parts and form twenty distinct conjugate pairs. For example, if the two half-planes are
occupied by orthotropic elastic materials, then the Stroh eigenvalues and the Hermitian
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matrix N can be obtained explicitly [155, 164]. In this case there exist four relaxation times
tk (k = 1,2,3,4), given by

t1 =

√
ξ
[1

2(s+1)
]1

2

λ1
t2,3 =

√
ξ

([1
2(s+1)

]1
2 ±
[1

2(s−1)
]1

2

)
λ1

t4 =

√
C(1)

55 /C(1)
44

λ2
,

(8.74)

where ξ =
√

ρ11/ρ22 and s = (1+ρ11ρ22− (1+ρ12)
2)/(2

√
ρ11ρ22) > −1 with ργβ =

C(1)
γβ

/C(1)
66 ; and the two eigenvalues λ1, λ2 are determined by

λ1 =
N22

η1(N11N22−N12N̄12)
λ2 =

1
η3N33

. (8.75)

It is observed from Eq. (8.74) that t1 and t4 are always real; while t2and t3 are real when
s≥1, and complex conjugate when −1 < s < 1.

8.5.4 Image force for a perfect interface at the initial moment
At the initial moment t = 0, the image force can be expressed as

F2(0) =
b̂T

4π x̂2

[
2Re

{
N−1}−L1

]
b̂ (8.76)

which is consistent with the result obtained by Ting & Barnett [165] for a perfect interface
between two anisotropic elastic half-planes.

8.5.5 Image force for a free-sliding interface when time approaches
infinity

When time t→∞, the viscous interface will evolve into a free-sliding one on which the
shear stresses σ12 and σ32 are zero. It follows from Eq. (8.59) that

F2(∞) =
b̂T

4π x̂2

[
2Re

{
N−1−

5

∑
n=1

5

∑
m=1

2

∑
k=1

Ynmk

}
−L1

]
b̂. (8.77)

If we employ the following identity

N−1−
5

∑
n=1

5

∑
m=1

2

∑
k=1

Ynmk = N−1−Ψ(I1 + I2)Λ−1
0 Ψ̄

T

=
5

∑
k=3

vkv̄T
k

δk
=


0 0 0 0 0
0 k22 0 k24 k25
0 0 0 0 0
0 k̄24 0 k44 k45
0 k̄25 0 k̄45 k55


(8.78)
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where ki j can be concisely given byk22 k24 k25
k̄24 k44 k45
k̄25 k̄45 k55

=

N22 N24 N25
N̄24 N44 N45
N̄25 N̄45 N55

−1

(8.79)

then Eq. (8.77) can be further simplified as

F2(∞) =
1

4π x̂2

[
2b̃T Re

{
Ñ−1} b̃− b̂T L1b̂

]
(8.80)

where
b̃ =

[
b2 ∆φ ∆ϕ

]T (8.81)

Ñ =

N22 N24 N25
N̄24 N44 N45
N̄25 N̄45 N55

 (8.82)

Expression (8.80) indicates that (i) all the rest components in N except for those appearing
in Ñ have no influence on F2(∞); (ii) the material properties in the lower multiferroic
half-plane have no influence on F2(∞) for an elastic dislocation b̂ = [b1 0 b3 0 0]T (i.e,
b̃ = 0), and (iii) F2(∞) varies with rotations about the x3-axis due to the fact that the term
b̃T Re

{
Ñ−1} b̃ changes with rotations about the x3-axis, which is quite different to the

invariance property of the image force with the orientation of the perfect interface [35, 165].
Furthermore Eq. (8.80) for the image force on an extended dislocation interacting with a
free-sliding interface is strikingly simple! It is of interest to notice that Wang et al. [166]
have derived an expression for the image force on a line dislocation interacting with a
free-sliding interface between two piezoelectric half-planes. In the context of multiferroic
bimaterial, that expression can be slightly modified as

F2(∞) =
b̂T

4π x̂2

[
2Re

{[
J1N
J2

]−1[ J1
02×5

]}
−L1

]
b̂, (8.83)

where

J1 =

0 1 0 0 0
0 0 0 1 0
0 0 0 0 1

 J2 =
[

1 0 0 0 0
0 0 1 0 0

]
(8.84)

Even though it can be proved that Eqs. (8.80) and (8.83) are equivalent, Eq. (8.83) is still
not as explicit and concise as Eq. (8.80).

8.5.6 A comparison of image force F2(0) with F2(∞)

Here it is of interest to compare the value of the image forceF2(0) for a perfect interface
with that of F2(∞) for a free-sliding interface. It follows from Eqs. (8.76) and (8.77) that

F2(0)−F2(∞) =
1

2π x̂2

[
(b̂T v1)(v̄T

1 b̂)
δ1

+
(b̂T v2)(v̄T

2 b̂)
δ2

]
≥ 0 (8.85)
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due to the fact that both δ1 and δ2are positive. Equation (8.85) states that the image force on
an extended line dislocation interacting with a perfect interface is always equal to or larger
than that on the same dislocation interacting with a free-sliding interface. In other words
a free-sliding interface is more attractive to the extended line dislocation than a perfect
interface. If the two multiferroic half-planes are exactly the same, then F2(∞)≤ F2(0) = 0,
which means that the dislocation is always attracted to a free-sliding interface between two
identical multiferroic half-planes. If we can find a real extended Burgers vector b̂ which
is orthogonal to both v1 and v2, i.e., vT

1 b̂ = vT
2 b̂ = 0, then F2(0) ≡ F2(∞). Let v′i,v′′i

be, respectively, the real and imaginary parts of vi. Then the condition b̂T v1 = b̂T v2 = 0
is equivalent to the following set of four independent linear algebraic equations for the
unknown b̂, [

v′1 v′′1 v′2 v′′2
]T b̂ = 04×1 (8.86)

through which we can find at least a nonzero solution for the five-dimension real vector
b̂. In other words we can always find an extended line dislocation b̂ such that the image
force on the dislocation interacting with a perfect interface is just equal to that on the same
dislocation interacting with a free-sliding interface.

8.6 Conclusions
We have derived the elegant and exact closed-form Green’s functions Eqs. (8.38) and (8.39)
for a generally anisotropic multiferroic bimaterial with a viscous interface subjected to an
extended line force and an extended line dislocation in the upper half-plane. The obtained
Green’s function solutions are then interpreted physically in terms of the image singularities
in the form of an extended line force and an extended line dislocation. It is found that
twenty five static image singularities and fifty moving image singularities in the form of an
extended line force and an extended line dislocation for the upper or lower half-plane are
needed to satisfy exactly the interfacial conditions on a viscous interface. For a perfect
interface, on the other hand, only twenty five static image singularities are needed. (In
the context of pure elasticity, the number is further reduced to nine [157].) The image
force on an extended line dislocation due to its interaction with the viscous interface is
further derived, given explicitly by Eqs. (8.59) and (8.60). In order to better understand the
influence of the viscous interface on the mobility of the extended line dislocation, we then
look into the image force expression for six different cases: (i) isotropic elastic bimaterials,
(ii) transversely isotropic multiferroic bimaterials with the symmetry axes along the x3-
axis, (iii) relaxation time, (iv) image force at the initial moment for a perfect interface,
(v) image force at infinite time for a free-sliding interface, and (vi) a comparison of the
image force at the initial moment to that at infinite time. The results show that

1. the derived image force expression is valid for any kind of mathematical degenerate
materials;

2. as many as fifty relaxation times are needed to describe the time-dependent image
force (see Eq. (8.73)) for a viscous interface between two generally anisotropic mul-
tiferroic half-planes, and
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3. a free-sliding interface is more attractive to the line dislocation than a perfect inter-
face.

It is expected that the Green’s functions presented in this paper could be directly applied
to the study of dislocation induced mobility in novel multiferroic bimaterials. For more
complicated boundary value problems, the derived exact closed-form Green’s functions
can be utilized as the kernel functions in any boundary integral formulation. Since only the
boundary of the problem needs to be discretized, field concentration and singularity can be
more efficiently handled than the domain-based discretization method.

8.7 An appendix: Proof that p cannot be real in Eq. (8.3)

If we choose uk = ak f (zp) (k = 1,2,3), φ = a4 f (zp) and ϕ = a5 f (zp) with zp = x1 + px2,
then differentiation of uk , φ and ϕ leads to

uk,l = (δl1 + pδl2)ak f ′(zp)
φ,l = (δl1 + pδl2)a4 f ′(zp) ϕ,l = (δl1 + pδl2)a5 f ′(zp)

(8.87)

where δli is the Kronecker delta.
Consequently, satisfaction of σi j, j = 0, Di,i = 0, and Bi,i = 0 yields (assuming constant

material properties in the solid)

(Ci jksak + esi ja4 +qsi ja5)(δ j1 + pδ j2)(δs1 + pδs2) = 0 (8.88a)
(eiksak− εisa4−αisa5)(δi1 + pδi2)(δs1 + pδs2) = 0 (8.88b)
(qiksak−αisa4−µisa5)(δi1 + pδi2)(δs1 + pδs2) = 0 (8.88c)

If p were real, multiplication of Eqs. (8.88a), (8.88b), and (8.88c) by ai, a4 and a5, respec-
tively, and subtraction of the results would lead to

Ci jks
[
ai(δ j1 + pδ j2)

]
[ak(δs1 + pδs2)]+ εis [a4(δi1 + pδi2)] [a4(δs1 + pδs2)]

+2αis [a4(δi1 + pδi2)] [a5(δs1 + pδs2)]+ µis [a5(δi1 + pδi2)] [a5(δs1 + pδs2)] = 0 (8.89)

which violates the positive definite (elastic and electromagnetic) energy conditions

Ci jksui, juk,s > 0 εisEiEs +2αisEiHs + µisHiHs > 0 (8.90)

where Ei =−φ,i and Hi =−ϕ,i are the electric field and magnetic field, respectively.
It then follows that the ten eigenvalues of Eq. (8.3) should form five conjugate pairs

since all the three matrices Q, R, and T in Eq. (8.3) are real.
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Chapter 9

Role of Material Property Gradient and
Anisotropy in Thermoelectric Materials

9.1 Introduction
Thermoelectric materials, which possess the inherent property of coupled transport of heat
and electricity, are becoming increasingly important in the field of energy production, con-
version, conservation, and nondestructive testing (NDT) [167–172]. Recently nanostruc-
tural thermoelectric materials have shown great promise for thermoelectric applications
because these nanostructural materials can reduce the thermal conductivity more than the
electrical conductivity by interface scattering. In other words, with these novel materials,
one can achieve an increase in the power factor, with the consequence of increasing the
thermoelectric figure of merit ZT [173–176].

It has been discovered that the noncontacting thermoelectric technique can be used to
detect various imperfections in conducting metals exhibiting thermoelectric effect when the
specimen to be tested is subjected to directional heating and cooling [167, 177, 178]. The
physics of the process is relatively simple: An external heating or cooling is applied to the
specimen to produce a modest temperature gradient in the test material domain. Since the
host material and the inclusions (more accurately called inhomogeneities) within it have
different material properties, different temperature field and thus different thermoelectric
potentials will be induced along the interfaces between the host material and inclusion.
These potential differences will drive opposite thermoelectric currents (and thus two local
current loops) inside and outside the inclusion, which can be finally detected by scanning
the specimen with a sensitive magnetometer. It should be pointed out that, the capability of
detecting these imperfections depends on the thermoelectric background signal produced
by the intrinsic anisotropy and inhomogeneity (or grading composition) of the material. In
other words, a clear understanding of the effect of both anisotropy and inhomogeneity on
the material response is required. Nayfeh et al. [168] presented an analytic model to calcu-
late the magnetic field produced by thermoelectric currents in homogeneous but anisotropic
materials under two-dimensional (2D) heating and cooling. Carreon et al. [169], on the
other hand, presented another analytic model to calculate the normal and tangential mag-
netic fields produced by thermoelectric currents in an isotropic but linearly gradient slender
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rectangular bar under axial heating and cooling. However, since most materials are both
inhomogeneous and anisotropic (even though weakly), a study is needed on the coupling
influence of the material anisotropy and inhomogeneity on the material response, which
motivates this investigation. For simplicity, here we consider an exponentially graded
anisotropic material under 2D heating and cooling, and we derive the explicit solutions by
converting the original problem into two inhomogeneous Helmholtz equations via eigen-
value/eigenvector separation. The corresponding 2D problem in homogeneous anisotropic
materials is also discussed by means of the elegant complex variable method. These in-
clude the explicit solutions for a line heat source in an infinite homogeneous anisotropic
material and in one of two bonded anisotropic half-planes. The correctness of the meth-
ods is verified by reducing our results to the existing simple solutions obtained by Nayfeh
et al. [168], and by comparing the results from our eigenvalue/eigenvector separation ap-
proach and complex-variable method. The effect of the material gradient and anisotropy on
the induced fields is clearly demonstrated and its impact on the nondestructive evaluation
of materials is also discussed.

9.2 A Line Heat Source in an Infinite Exponentially Gra-
dient Anisotropic Thermoelectric Material

In this section, we present an analytic model to predict the magnetic background signal
caused in inhomogeneous anisotropic media.

For anisotropic materials, the electrical current density j and thermal heat flux h vectors
are related to both electric potential Φ and temperature T through [168, 170]

ji =−σi jΦ, j−∈i jT, j

hi =−∈̄i jΦ, j−κi jT, j
(9.1)

where the subscript “, j” to Φ and T denotes the derivative with respect to the jth coordinate
x j (x1 = x, x2 = y, x3 = z), σi j denotes the electrical conductivity measured at a uniform
temperature, κi j is the thermal conductivity at zero electrical field, ∈i j and ∈̄i j are ther-
moelectric coupling coefficients. These coupling coefficients can be expressed in terms of
the absolute thermoelectric power S and the electrical conductivity σi j of the material as
∈i j = Sσi j and ∈̄i j = ST σi j. Furthermore, for gradient materials as studied in this section,
σi j, κi j, ∈i j and ∈̄i j are all functions of the coordinates x1 = x, x2 = y, x3 = z.

The electrical current density and thermal heat flux vectors should satisfy the following
equations

∇ · j = 0
∇ ·h = qgen

(9.2)

where qgen is the power generated per unit volume. It is obvious that the induced electrical
current density (thus the magnetic field) is proportional to the strength of the heat power
emanated from the source. Thus the magnitude of the induced magnetic field can be con-
trolled by the applied temperature source so that the associated magneto-thermal transport
effect can be neglected.
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Let us consider an infinite line heat source in an infinite inhomogeneous anisotropic
material. We first assume that σi j, κi j, ∈i j and ∈̄i j are exponentially varied in the xy-plane
in the same manner along the x and y directions as follows,[

σi j ∈i j ∈̄i j κi j
]
= exp(2β1x+2β2y)

[
σ0

i j ∈0
i j ∈̄

0
i j κ0

i j

]
(9.3)

where σ0
i j,∈0

i j, ∈̄
0
i j,κ

0
i j,β1 and β2 are all material constants.

We point out that functionally graded materials (FGMs) can be fabricated for special
applications [51, 52]. They can be varied in many different ways and in different orienta-
tions in the space. The exponential variation is a special case which has been investigated
in the FGM community for over twenty years [59, 60]. For such a special variation, it is
often possible to derive either an analytical solution or even an exact-closed form solution
(as the one presented in this paper), serving as benchmarks for future numerical simula-
tion. However, other complicated spatial variation can be piecewise approximated when
solving the real problem via a boundary integral equation formulation. In particular, when
the material gradients are not too large, the exponential variation in material properties
studied here will approximate a linear variation in material properties. We also point out
that closed-form solutions can still be obtained for some non-exponential variations of the
material properties [179, 180].

Under the above assumption, the principal directions of the electrical conductivity, ther-
mal conductivity and thermoelectric coupling tensors do not change at different locations.
Furthermore, for the convenience of analysis, we assume that the electrical conductivity,
thermal conductivity and thermoelectric coupling tensors all exhibit the same principal di-
rections, though their degree of anisotropy might be very different [168]. Without loss of
generality, in the following we assume that the three Cartesian coordinates x, y and z are es-
tablished along the principal directions. The infinite line heat source is parallel to the z-axis
and passes through x = x0 and y = y0. Therefore, we can write qgen = Qδ (x−x0)δ (y−y0),
where Q denotes the total heat power emanated from a unit length of the line source and
δ () is the Dirac delta function. Consequently the problem becomes two dimensional, with
the electric potential and temperature being only functions of the coordinates x and y. By
keeping the above assumptions in mind and by substituting Eq. (9.1) into Eq. (9.2), we
finally obtain the following set of coupled inhomogeneous partial differential equations

σ0
1 ∈0

1

∈0
1

κ(∈0
2)

2

ησ0
2

∂ 2Φ

∂x2

∂ 2T
∂x2

+

σ0
2 ∈0

2

∈0
2

(∈0
2)

2

ησ0
2

∂ 2Φ

∂y2

∂ 2T
∂y2


+ 2β1

σ0
1 ∈0

1

∈0
1

κ(∈0
2)

2

ησ0
2

[∂Φ

∂x
∂T
∂x

]
+2β2

[
σ0

2 ∈0
2

∈0
2

(∈0
2)

2

ησ0
2

][
∂Φ

∂y
∂T
∂y

]

=−
exp(−2β1x0−2β2y0)(∈0

2)
2Q

ησ0
2 κ0

2
δ (x− x0)δ (y− y0)

[
0
1

]
(9.4)

where η = ∈0
2 ∈̄

0
2/(σ0

2 κ0
2 ) is the dimensionless thermoelectric coupling parameter. We

mention that during the derivation, we have utilized the identity ∈0
1/∈0

2 = ∈̄0
1/∈̄0

2. It is also
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worthy to point out that, for typical metals the coupling parameter η is relatively small,
somewhere between 10−3 and 10−2 [167–169].

In order to solve Eq. (9.4), we next consider the following eigenvalue problem:σ0
1 ∈0

1

∈0
1

κ(∈0
2)

2

ησ0
2

v = λ

σ0
2 ∈0

2

∈0
2

(∈0
2)

2

ησ0
2

v (9.5)

The two eigenvalues of the above equation can be easily determined as

λ1 =
σ +κ−2 ∈ η +

√
(σ −κ)2−4η(σ− ∈)(∈ −κ)

2(1−η)
> 0

λ2 =
σ +κ−2 ∈ η−

√
(σ −κ)2−4η(σ− ∈)(∈ −κ)

2(1−η)
> 0

(9.6)

where σ = σ0
1 /σ0

2 , ∈= ∈0
1/∈0

2, and κ = κ0
1/κ0

2 are ratios of the material properties. The
two eigenvectors associated with the eigenvalues are

v1 =
[
∈0

2 (λ1− ∈)
σ0

2 (σ −λ1)

]
v2 =

[
∈0

2 (λ2− ∈)
σ0

2 (σ −λ2)

]
(9.7)

Apparently due to the fact that both matrices in Eq. (9.5) are real and symmetric, then
we have the following orthogonal relationships[

vT
1

vT
2

]σ0
2 ∈0

2

∈0
2

(∈0
2)

2

ησ0
2

[v1 v2
]
=
[

δ1 0
0 δ2

]
[

vT
1

vT
2

]σ0
1 ∈0

1

∈0
1

κ(∈0
2)

2

ησ0
2

[v1 v2
]
=
[

λ1δ1 0
0 λ2δ2

] (9.8)

where

δ1 = σ
0
2 (∈0

2)
2

[
(λ1− ∈)(2σ− ∈−λ1)+

(σ −λ1)
2

η

]
> 0

δ2 = σ
0
2 (∈0

2)
2

[
(λ2− ∈)(2σ− ∈−λ2)+

(σ −λ2)
2

η

]
> 0

(9.9)

Now we introduce two new functions F and G which are related to electric potential
and temperature through [

Φ

T

]
=
[
v1 v2

][F
G

]
(9.10)

In view of the orthogonal relationships in Eq. (9.8), Eq. (9.4) can now be decoupled
into

∂ 2F
∂x2 +

1
λ1

∂ 2F
∂y2 +2β1

∂F
∂x

+
2β2

λ1

∂F
∂y

=−2πe−β1x0−β2y0P1√
λ1

δ (x− x0)δ (y− y0)

∂ 2G
∂x2 +

1
λ2

∂ 2G
∂y2 +2β1

∂G
∂x

+
2β2

λ2

∂G
∂y

=−2πe−β1x0−β2y0P2√
λ2

δ (x− x0)δ (y− y0)
(9.11)
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where

P1 =
exp(−β1x0−β2y0)(σ −λ1)(∈0

2)
2Q

2πηκ0
2
√

λ1δ1

P2 =
exp(−β1x0−β2y0)(σ −λ2)(∈0

2)
2Q

2πηκ0
2
√

λ2δ2

(9.12)

Equation (9.11) can be equivalently expressed by

∂ 2F
∂x2 +

∂ 2F

∂ (
√

λ1y)2 +2β1
∂F
∂x

+
2β2√

λ1

∂F
∂ (
√

λ1y)
=

−2π exp(−β1x0−β2y0)P1δ (x− x0)δ (
√

λ1y−
√

λ1y0)

∂ 2G
∂x2 +

∂ 2G

∂ (
√

λ2y)2 +2β1
∂G
∂x

+
2β2√

λ2

∂G
∂ (
√

λ2y)
=

−2π exp(−β1x0−β2y0)P2δ (x− x0)δ (
√

λ2y−
√

λ2y0)

(9.13)

In order to solve Eq. (9.13), we further introduce two new functions such that

F = exp(−β1x−β2y) f G = exp(−β1x−β2y)g (9.14)

As a result, Eq. (9.13) can be expressed into two inhomogeneous Helmholtz equations
for f and g as

∂ 2 f
∂x2 +

∂ 2 f

∂ (
√

λ1y)2 −ρ
2
1 f =−2πP1δ (x− x0)δ (

√
λ1y−

√
λ1y0)

∂ 2g
∂x2 +

∂ 2g

∂ (
√

λ2y)2 −ρ
2
2 g =−2πP2δ (x− x0)δ (

√
λ2y−

√
λ2y0)

(9.15)

where

ρ1 =

√
β 2

1 +
β 2

2
λ1

ρ2 =

√
β 2

1 +
β 2

2
λ2

(9.16)

The solutions to Eq. (9.15) can now be conveniently given by

f = P1K0

[
ρ1

√
(x− x0)

2 +λ1(y− y0)
2
]

g = P2K0

[
ρ2

√
(x− x0)

2 +λ2(y− y0)
2
] (9.17)

where Kn is the nth order modified Bessel function of the second kind.
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In view of Eqs. (9.10), (9.14) and (9.17), the electric potential and the temperature
induced by the line heat source can be determined as

Φ

Q
=
∈03

2 (σ −λ1)(λ1− ∈)
2πηκ0

2
√

λ1δ1

K0

[
ρ1

√
(x− x0)

2 +λ1(y− y0)
2
]

exp [β1(x+ x0)+β2(y+ y0)]

+
∈03

2 (σ −λ2)(λ2− ∈)
2πηκ0

2
√

λ2δ2

K0

[
ρ2

√
(x− x0)

2 +λ2(y− y0)
2
]

exp [β1(x+ x0)+β2(y+ y0)]

T
Q

=
σ0

2 (∈0
2)

2(σ −λ1)
2

2πηκ0
2
√

λ1δ1

K0

[
ρ1

√
(x− x0)

2 +λ1(y− y0)
2
]

exp [β1(x+ x0)+β2(y+ y0)]

+
σ0

2 (∈0
2)

2(σ −λ2)
2

2πηκ0
2
√

λ2δ2

K0

[
ρ2

√
(x− x0)

2 +λ2(y− y0)
2
]

exp [β1(x+ x0)+β2(y+ y0)]

(9.18)

When β1 = β2 = 0 for the homogeneous material, the present solutions are reduced to
those in Nayfeh et al. [168] by noticing the following asymptotic behavior for K0(x)

K0(x)→− ln(x/2)− γ when x→ 0+ (9.19)

with γ = 0.57721 being the Euler constant.
Once we obtain the expressions for the electric potential and temperature, it is not

difficult to derive the electrical current density and heat flux vectors as follows.

j1 =
Qσ0

2 ∈03
2 (σ −λ1)(σ− ∈)

2πηκ0
2
√

λ1δ1
Y1(x,y,λ1,ρ1)

+
Qσ0

2 ∈03
2 (σ −λ2)(σ− ∈)

2πηκ0
2
√

λ2δ2
Y1(x,y,λ2,ρ2)

j2 =
Qσ0

2 ∈03
2 (σ −λ1)(σ− ∈)

2πηκ0
2
√

λ1δ1
Y2(x,y,λ1,ρ1)

+
Qσ0

2 ∈03
2 (σ −λ2)(σ− ∈)

2πηκ0
2
√

λ2δ2
Y2(x,y,λ2,ρ2)

(9.20)

h1 =
Qσ0

2 (∈0
2)

2(σ −λ1) [σ −λ1 +η(λ1− ∈)]
2πη
√

λ1δ1
Y1(x,y,λ1,ρ1)

+
Qσ0

2 (∈0
2)

2(σ −λ2) [σ −λ2 +η(λ2− ∈)]
2πη
√

λ2δ1
Y1(x,y,λ2,ρ2)

h2 =
Qσ0

2 (∈0
2)

2(σ −λ1) [σ −λ1 +η(λ1− ∈)]
2πη
√

λ1δ1
Y2(x,y,λ1,ρ1)

+
Qσ0

2 (∈0
2)

2(σ −λ1) [σ −λ1 +η(λ1− ∈)]
2πη
√

λ1δ1
Y2(x,y,λ2,ρ2)

(9.21)
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where the functions Y1 and Y2 are defined as

Y1(x,y,λ ,ρ) =
β1λK0

[
ρ

√
(x− x0)

2 +λ (y− y0)
2
]

exp [−β1(x− x0)−β2(y− y0)]

+
ρλ (x− x0)K1

[
ρ

√
(x− x0)

2 +λ (y− y0)
2
]

exp [−β1(x− x0)−β2(y− y0)]
√

(x− x0)
2 +λ (y− y0)

2

Y2(x,y,λ ,ρ) =
β2K0

[
ρ

√
(x− x0)

2 +λ1(y− y0)
2
]

exp [−β1(x− x0)−β2(y− y0)]

+
ρλ (y− y0)K1

[
ρ

√
(x− x0)

2 +λ (y− y0)
2
]

exp [−β1(x− x0)−β2(y− y0)]
√

(x− x0)
2 +λ (y− y0)

2

(9.22)

The magnetic field can be obtained from the Maxwell’s equation ∇×H = j by integra-
tion. For the current 2D problem, we have

Hz =
∫

j1dy or Hz =−
∫

j2dx (9.23)

which can be solved by simple numerical quadrature. It is interesting to point out that if the
anisotropic effect is ignored by letting σ ,∈,κ → 1, the inhomogeneity of the material as
described by Eq. (9.3) will not produce any nonvanishing thermoelectric current distribu-
tion and the associated nonvanishing thermoelectric magnetic field. This fact can be easily
observed from the previous theoretic development.

This analytical solution can be utilized to study the effect of the grading composition on
the material behavior/response under different loadings, with the results being applied as
guideline in non-contacting and nondestructive evaluation of materials. However, in order
to verify the correctness of the derived solution, we now present the complex variable
method for the corresponding anisotropic but homogeneous (β1 = β2 = 0) material case. It
is shown that the solution based on the complex variable method is elegant. Furthermore,
the corresponding bimaterial case can be also obtained in a very concise form. Our solution
contains many previous results as special cases, and in Section 9.4, numerical results will
be presented for both grading and homogeneous material cases based on the two different
solution approaches. The effect of the material grading composition and anisotropy is
further discussed, showing clearly the importance of them on the material response.

9.3 Complex Variable Formulation for Homogeneous Aniso-
tropic Thermoelectric Materials and its Applications

In the following discussions we will first present the basic complex variable formulation
for 2D problems in homogeneous anisotropic thermoelectric materials. Then we derive
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the explicit solutions for a line heat source in a homogeneous anisotropic thermoelectric
material and in one of two bonded anisotropic thermoelectric half-planes, demonstrating
the proposed complex variable method.

9.3.1 Complex Variable Formulation
For homogeneous materials (β1 = β2 = 0) in the absence of line source, it is found from
Eq. (9.4) that [

σ1 ∈1

∈1
κ∈2

2
ησ2

]∂ 2Φ

∂x2

∂ 2T
∂x2

+

[
σ2 ∈2

∈2
∈2

2
ησ2

]∂ 2Φ

∂y2

∂ 2T
∂y2

= 0 (9.24)

If we further introduce two functions F and G defined in Eq. (9.10), it is found that

∂ 2F
∂x2 +

1
λ1

∂ 2F
∂y2 = 0

∂ 2G
∂x2 +

1
λ2

∂ 2G
∂y2 = 0, (9.25)

whose general solutions can be conveniently given by

F = Im{ f1(z1)} G = Im{ f2(z2)} (9.26)

where z1 = x+ i
√

λ1y, z2 = x+ i
√

λ2y. Consequently the electric potential and temperature
can be expressed as

u =
[

Φ

T

]
= A Im{f(z)} , (9.27)

where

A =
[
v1 v2

]
f(z) =

[
f1(z1) f2(z2)

]T (9.28)

On the other hand, in the absence of source, we can introduce two functions φ1 and φ2
such that

j1 =−∂φ1

∂y
j2 =

∂φ1

∂x

h1 =−ησ2κ2

∈2
2

∂φ2

∂y
h2 =

ησ2κ2

∈2
2

∂φ2

∂x

(9.29)

As a result, it follows that the two functions φ1 and φ2 can also be concisely expressed
in terms of the analytic function vector f(z) as

ϕ =
[

φ1
φ2

]
= BRe{f(z)} , (9.30)

where

B =

[
σ2 ∈2

∈2
∈2

2
ησ2

]
A
[√

λ1 0
0
√

λ2

]
=[ √

λ1σ2∈2(σ− ∈)
√

λ2σ2∈2(σ− ∈)
√

λ1 ∈2
2

(
λ1− ∈+σ−λ1

η

) √
λ2 ∈2

2

(
λ2− ∈+σ−λ2

η

)] (9.31)
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The electrical current density and heat flux vectors can be obtained from Eqs. (9.29)
and (9.30) as [

j1
h1

]
=

[
1 0
0 ησ2κ2

∈2
2

]
B
[√

λ1 0
0
√

λ2

]
Im
{

f′(z)
}

[
j2
h2

]
=

[
1 0
0 ησ2κ2

∈2
2

]
BRe

{
f′(z)

} (9.32)

Due to the fact that ∇×H = j, or equivalently

∂Hz

∂y
= j1

∂Hz

∂x
=− j2 (9.33)

then the nonzero magnetic field component Hz can also be concisely expressed in terms of
f(z) as

Hz =−φ1 =−
[
1 0

]
BRe{f(z)}= σ2∈2(∈ −σ)

[√
λ1
√

λ2
]

Re{f(z)} (9.34)

In addition it is found that the matrix AB−1 is symmetric, real, and positive definite
given by

AB−1 = (AB−1)T =
2

∑
k=1


 ∈2

2(λk−∈)2

δk
√

λk

σ2∈2(λk−∈)(σ−λk)
δk
√

λk

σ2∈2(λk−∈)(σ−λk)
δk
√

λk

σ2
2 (σ−λk)

2

δk
√

λk


 (9.35)

9.3.2 Applications
In the following we apply the derived complex variable formulation to two interesting prob-
lems in order to demonstrate its versatility.

A Steady Line Heat Source in a Homogeneous Thermoelectric Material

We first consider a steady line heat source of strength Q located at origin in a homogeneous
material. It follows from Eq. (9.30) that

f(z) =
i ∈2

2 Q
2πησ2κ2

〈ln(zα)〉B−1
[

0
1

]
(9.36)

where 〈ln(zα)〉= diag[ln(z1) ln(z2)].
Consequently the electric potential and temperature can be obtained from Eq. (9.27),

while the electrical current density and heat flux vectors can be obtained from Eq. (9.32).
Particularly it follows from Eq. (9.34) that

Hz =
Q∈2(∈ −σ)

2πκ2(λ1−λ2)(1−η)

[
tan−1

(√
λ1y
x

)
− tan−1

(√
λ2y
x

)]
(9.37)

which is just the result obtained by Nayfeh et al. [168]. Thus the correctness of the complex
variable method is verified. In addition it is observed that the solution procedure presented
here is very simple as compared to previous methods in this field.
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A Steady Line Heat Source in Anisotropic Thermoelectric Bimaterials

Next we consider a steady line heat source of strength Q located at (0,d), d > 0, in the
upper one of two bonded different anisotropic half-planes y > 0 (#1) and y < 0 (#2). It is
assumed that the principal directions for both half-planes are parallel to the x- and y-axes.
In addition, the superscripts “(1)” and “(2)” are attached to scalars in the upper and lower
half-planes, respectively, while the subscripts 1 and 2 are attached to matrices/vectors in
the upper and lower half-planes, respectively. In the following derivations, we will first
replace the complex variables z1 and z2 by the common complex variable z = x+ iy due to
the fact that z1 = z2 = z on the real axis [153]. When the analysis is finished, the complex
variable z = x+ iy shall be changed back to the corresponding complex variables z1 and z2.

We assume that the interface between the two half-planes, at y = 0, is perfect, i.e. [167],

Φ
(1) = Φ

(2) T (1) = T (2) j(1)
2 = j(2)

2 h(1)
2 = h(2)

2 (9.38)

The above continuity conditions on the interface y = 0 can also be equivalently ex-
pressed as

u1 = u2 ϕ 1 = Λϕ 2 (9.39)

where Λ is a 2×2 diagonal matrix defined by

Λ = diag
[

1 η(2)σ
(2)
2 κ

(2)
2 ∈

(1)2
2

η(1)σ
(1)
2 κ

(1)
2 ∈

(2)2
2

]
(9.40)

In view of Eqs. (9.27) and (9.30), the interfacial continuity conditions at y = 0 in
Eq. (9.39) can also be expressed in terms of the two analytic function vectors f1(z) and
f2(z) as

A1f+1 (x)−A1f̄−1 (x) = A2f−2 (x)−A2f̄+2 (x) (9.41a)

B1f+1 (x)+B1f̄−1 (x) = ΛB2f−2 (x)+ΛB2f̄+2 (x) (9.41b)

It follows from Eq. (9.41a) that

f1(z) =−A−1
1 A2f̄2(z)+ f0(z)+ f̄0(z)

f̄1(z) =−A−1
1 A2f2(z)+ f0(z)+ f̄0(z)

(9.42)

where f0(z) is the analytic function vector for a line heat source located at (0,d), d > 0, in
a homogeneous infinite plane given by

f0(z) =
i(∈(1)

2 )2Q

2πη(1)σ
(1)
2 κ

(1)
2

〈ln(z− i
√

λαd)〉B−1
1

[
0
1

]
(9.43)

Substituting Eq. (9.42) into Eq. (9.41b), we finally obtain

f2(z) = 2B−1
2 (A1B−1

1 Λ +A2B−1
2 )−1A1f0(z) (9.44)

Consequently we can derive the expression of f1(z) as

f1(z) = f0(z)+A−1
1 (A1B−1

1 Λ −A2B−1
2 )(A1B−1

1 Λ +A2B−1
2 )−1A1f̄0(z) (9.45)
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Therefore, the full-field expressions of f1(z) and f2(z) are obtained as follows,

f1(z) =
i(∈(1)

2 )2Q

2πη(1)σ
(1)
2 κ

(1)
2

[
〈ln(zα − i

√
λαd)〉+

2

∑
k=1
〈ln(zα + i

√
λkd)〉MIk

]
B−1

1

[
0
1

]
(9.46)

f2(z) =
i(∈(1)

2 )2Q

2πη(1)σ
(1)
2 κ

(1)
2

2

∑
k=1
〈ln(z∗α − i

√
λkd)〉NIkB−1

1

[
0
1

]
(9.47)

where the superscript “*” is utilized to distinguish the eigenvalues associated with the lower
half-plane from those associated with the upper half-plane, and

I1 = diag
[
1 0

]
I2 = diag

[
0 1

]
(9.48)

M = A−1
1 (A2B−1

2 −A1B−1
1 Λ)(A2B−1

2 +A1B−1
1 Λ)−1A1

N = 2B−1
2 (A2B−1

2 +A1B−1
1 Λ)−1A1

(9.49)

It follows from Eq. (9.34) that the induced magnetic field in the upper half-plane y > 0
is given by

H(1)
z =

∈(1)2
2 Q

2πη(1)σ
(1)
2 κ

(1)
2

[
1 0

]
×

B1

[〈
tan−1

(√
λα(y−d)

x

)〉
+

2

∑
k=1

〈
tan−1

(√
λαy+

√
λkd

x

)〉
MIk

]
B−1

1

[
0
1

]
(9.50)

while that in the lower half-plane y < 0 is given by

H(2)
z =

∈(1)2
2 Q

2πη(1)σ
(1)
2 κ

(1)
2

[
1 0

]
B2

2

∑
k=1

〈
tan−1

(√
λ ∗αy−

√
λkd

x

)〉
NIkB−1

1

[
0
1

]
(9.51)

9.4 Numerical Examples
In this section, we first consider the following material properties

σ
0
2 = 5.7×105 A/(m ·V) κ

0
2 = 7.3 W/(m · ◦C) ∈0

2 =−2.793 A/(m · ◦C)
σ = 1.023 κ = 1.01 ∈= 1.055

which are typical values of a homogeneous Ti–6Al–4V, the popular aerospace titanium
alloy. In addition we take the thermoelectric coupling parameter η = 10−2. Figure 9.1
demonstrates the distributions of the electric current density component j1 along the x-
axis (y = 0) induced by a line heat source of unit strength (Q = 1) located at origin for
different values of the gradient parameter β1 = −5,−1,0,1,5 m−1 with β2 = 0 (in this
way the material is gradient along the x-direction). It is observed from this figure that
the induced j1 for nonzero β1 is no longer anti-symmetric with respect to the origin. The
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Figure 9.1: Distributions of the thermoelectric current density component j1 along the x-
axis (y = 0) induced by a line heat source of unit strength (Q = 1) located at origin for
different values of the gradient parameter β1 =−5,−1,0,1,5 m−1 with β2 = 0. The result
for the homogeneous material case (β1 = β2 = 0) is the same as that based on the complex
variable method (Eqs. (9.32) and (9.36)) as shown in open circles.

magnitude of j1 at x > 0 (or x < 0) is greater (or lower) than that at −x for β1 > 0 (or
β1 < 0). In addition the magnitude difference becomes larger when the absolute value
of β1 increases. Therefore, the material property gradient in an anisotropic material can
exert a significant influence on the induced thermoelectric currents, and consequently on
the magnetic field. Shown in Figure 9.1 is also the electric current density component j1
for the homogeneous but anisotropic material using Eqs. (4.32) and (4.36) based on the
complex-variable method (in open circles). It is clear that for this case, both solutions
(eigenvalue/eigenvector separation based and complex-variable based) predict exactly the
same results, which partially and mutually verify the correctness of the derived solutions.

Next we present in Figure 9.2 the distribution of the electric current density component
j1 along the x-axis (y = 0) induced by a line heat source of unit strength (Q = 1) located at
origin for different combinations of the material property ratios σ , κ and∈with β1 = 1 m−1

and β2 = 0. The values of σ0
2 , κ0

2 , ∈0
2 and η are also the same as before. It is clearly

observed that the magnitude of j1 decreases as the material anisotropic effect becomes
weak (i.e., the ratios σ , κ and ∈ are close to 1) and that there is no induced electric current
density when the material is isotropic (σ = κ = ∈= 1) even it is inhomogeneous.

9.5 Conclusion
In this research we presented analytical expressions of the electric potential, tempera-
ture, electric current densities and thermal fluxes due to a steady line heat source in the
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Figure 9.2: Distribution of the thermoelectric current density component j1 along the x-axis
(y = 0) induced by a line heat source of unit strength (Q = 1) located at origin for different
combinations of the material property ratios σ , κ and ∈ with β1 = 1 m−1 and β2 = 0.

exponentially gradient and anisotropic thermoelectric material by introducing the eigen-
value/eigenvector separation approach. We also developed an elegant complex variable
formulation to study 2D problems in the corresponding anisotropic but homogeneous ther-
moelectric material, which was also utilized to verify the eigenvalue based solutions for
the special case (i.e., when the material is homogeneous). The correctness of the devel-
oped solutions was further verified by reducing to the existing solutions for some special
cases. Our numerical results clearly indicate the effect of both material anisotropy and
gradient on the induced thermoelectric current density and thus the magnetic fields to be
detected by the magnetometer. Recent theoretical and experimental studies have shown
that the material anisotropy is required in this special noncontacting nondestructive evalu-
ation approach. However, since most materials are both anisotropic and inhomogeneous,
the spurious signal from material grading as well as anisotropy has to be clearly separated
from the true signal due to the material flaw. The solutions presented can be directly used
to calculate the background signal for given material anisotropy and grading (in the term
of exponential variation), and therefore, comparing this signal with the detected signal by
the magnetometer will help to identify the potential material flaw in the specimen.

Besides their direct applications to the nondestructive evaluation, it is expected that the
solutions developed in this research can be also applied to other practical 2D problems
(for example, a crack on the interface between two anisotropic half-planes, or an elliptical
anisotropic cylinder embedded in another anisotropic matrix). Results of these problems,
which are pertinent to noncontacting thermoelectric NDT, will be reported later.
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Chapter 10

Elastic And Electric Fields Induced By
QWR In Bimaterial Plane

In this chapter, we develop the anisotropic bimaterial Green’s functions in terms of the ef-
ficient and powerful Stroh formalism and the corresponding BEM program for the analysis
of the strain energy density and the relative strain energy for a QWR free-standing on or
embedded in an anisotropic semiconductor substrate. To treat the misfit lattice eigenstrain
within the QWR, we first convert the associated area integral to a line integral along the
interface of the QWR and its substrate. Then we discretize the boundary with constant
elements so that the involved kernel integration can be carried out in an exact closed form,
which is solved for the boundary (interface) values. The induced elastic field inside and
outside the QWR can be obtained using the solved interface values. We remark that in
order to apply our bimaterial program to the free-standing QWR case, we only need to
assume that the material stiffness in the upper half-plane is much smaller than that in the
lower half-plane substrate.

Our bimaterial BEM program is first tested against various existing results. It is then
applied to calculate the strain energy density and the relative strain energy in the InAs (111)
QWR which is free-standing on or embedded in the GaAs substrate. Our numerical results
show that, for the case of an isosceles triangle QWR on the substrate, the strain energy
density within the QWR strongly depends on the base angle of the triangle. We also observe
that the magnitude of the relative strain energy for this case increases with increasing side
angle. For a square QWR either free standing on or embedded in the substrate, we found
that the magnitude of the relative strain energy increases with increasing depth of the QWR
to the substrate surface. Our numerical examples demonstrate the significant influence of
the QWR shape and the QWR location on both the strain energy density and the relative
strain energy in the QWR, which should be particularly useful to the successful growth of
QWRs via epitaxial approach.

This chapter is organized as follows: In Section 10.1, the boundary integral equation
and the required four sets of Green’s functions for the bimaterial matrix are presented. Nu-
merical examples are presented in Section 10.2, and conclusions are drawn in Section 10.3.
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Figure 10.1: A general QWR within a bimaterial substrate: An eigenstrain γ∗i j is applied to
the QWR which is an arbitrarily shaped polygon.

10.1 Bimaterial Green’s Functions
We assume that there is a QWR of arbitrary shape within a bimaterial substrate. A uniform
eigenstrain γ∗i j field is applied inside the QWR as shown in Figure 10.1. The elastic moduli
in the QWR, material 1 and material 2 are denoted, respectively, as cw

i jkl , c1
i jkl and c2

i jkl . In
each domain, the basic equations remain the same as in section 2.2.

It is noted that in order to solve the discretized boundary integral equations, the involved
Green’s functions Ui j and Ti j and their integrations on each element are required. These
are presented below.

In the boundary integral equation (2.14) for the QWR domain, only the full-plane
Green’s functions are required, which can be expressed as [25],

U jk(X,x) =
1
π

Im
{

A jr ln(zr− sr)Akr
}

(10.1)

for the displacement, and

Tjk(X,x) =− 1
π

Im
{

B jr
prn1−n3

zr− sr
Akr

}
(10.2)

for the traction. In Eqs. (10.1) and (10.2), n1 and n3 are the outward normal components at
point x, and the complex variables zr and sr (r = 1,2,3) are defined by

zr = x+ prz (10.3)
sr = X + prZ (10.4)

In Eqs. (10.3) and (10.4), pr (r = 1,2,3) are the Stroh eigenvalues of the QWR material,
which are related to the elastic moduli only, and A and B are the corresponding matrices of
Stroh eigenvectors [1, 35].

For the matrix domain (i.e., the bimaterial substrate), due to the relative locations of
the source and field points, there are four sets of Green’s functions. Again, these Green’s
functions were derived in terms of the Lekhnitskii formalism [64]. However, the Stroh for-
mulism is more convenient and efficient [35]. Therefore, we first present these bimaterial
Green’s functions in the Stroh formulism. We refer to Figure 10.1 where materials 1 and 2
occupy the half-plane z > 0 and z < 0, respectively.
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First, let the source point X = (X ,Z) be in material 1 (z > 0). Then, if the field point
x = (x,z) is in the z > 0 half-plane, the displacement and traction Green’s functions can be
expressed as

U1
k j =

1
π

Im{A1
jr ln(zr− sr)A1

kr +
4

∑
v=1

[A1
jr ln(zr− s̄v)Q

11,v
rk ]} (10.5)

T 1
k j =− 1

π
Im{B1

jr
p1

r n1−n3

zr− sr
A1

kr +
4

∑
v=1

[B1
jr

p1
r n1−n3

zr− s̄v
Q11,v

rk ]} (10.6)

On the other hand, if the field point is in the z < 0 half-plane, then

U2
k j =

1
π

Im
4

∑
v=1

[A2
jr ln(zr− sv)Q

12,v
rk ] (10.7)

T 2
k j =− 1

π
Im

4

∑
v=1

[B2
jr

p2
r n1−n3

zr− sv
Q12,v

rk ] (10.8)

Now, let the source point (X ,Z) be in material 2 (z < 0). Then, if the field point (x,z)
is in the z > 0 half-plane, we have

U1
k j =

1
π

Im
4

∑
v=1

[A1
jr ln(zr− sv)Q

21,v
rk ] (10.9)

T 1
k j =− 1

π
Im

4

∑
v=1

[B1
jr

p1
r n1−n3

zr− sv
Q21,v

rk ] (10.10)

On the other hand, if the field point is in the z < 0 half-plane,

U2
k j =

1
π

Im{A2
jr ln(zr− sr)A2

kr +
4

∑
v=1

[A2
jr ln(zr− s̄v)Q

22,v
rk ]} (10.11)

T 2
k j =− 1

π
Im{B2

jr
p2

r n1−n3

zr− sr
A2

kr +
4

∑
v=1

[B2
jr

p2
r n1−n3

zr− s̄v
Q22,v

rk ]} (10.12)

In Eqs. (10.5)–(10.12), the superscript 1 or 2 to p, A, and B denotes that these eigenvalues
and their corresponding matrices of eigenvectors belong to material 1 or 2. The matrix Q
depends on the relative locations of the source and field points. Assuming that the source
point is in the half-plane of material λ (where λ = 1 or 2), then Q can be expressed as

Qλλ ,v
rk = Kλλ

r j (Iv) jĀλ
k j (10.13)

if the field point is in the half-plane of material λ , and

Qλ µ,v
rk = Kλ µ

r j (Iv) jAλ
k j (10.14)

if the field point is in the other half-plane of material µ (where µ 6= λ ). In Eqs. (10.13) and
(10.14), the matrix K is given by

Kλλ = (Aλ )−1(Mλ +M̄µ)−1(Mµ −M̄λ )Āλ (10.15)

Kλ µ = (Aµ)−1(Mµ +M̄λ )−1(Mλ +M̄λ )Aλ (10.16)
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with Mλ = −iBλ (Aλ )−1 (where λ = 1 or 2) and the diagonal matrix Iv has the following
expression for different indexes v,

I1 = diag[1,0,0] I2 = diag[0,1,0] I3 = diag[0,0,1] (10.17)

10.1.1 Integration of Bimaterial Green’s Functions
In order to carry out the line integral of the involved Green’s functions over each constant
element (e.g., along the nth element Γn), we let the generic element start from point 1,
(x1,z1) and end at point 2, (x2,z2), with length l = [(x2− x1)

2 +(z2− z1)
2]1/2. Then, the

integration of the involved Green’s displacements and tractions (only the integral variable-
dependent function) for the QWR (which requires only the infinite-plane Green’s functions)
can be carried out, which has been expressed in section 2.3.

We point out that similar expressions can be found for the integration of the bimaterial
Green’s functions in the substrate. Let the source point X be in material 1, if the field point
x is in material 1, the corresponding integrals are

h1
r (x,z) =

∫
Γn

ln(z1
r − s1

r )dΓn

= l

{
(x1 + p1

r z1)− s1
r

(x2− x1)+ p1
r (z2− z1)

ln
[
(x2 + p1

r z2)− s1
r

(x1 + p1
r z1)− s1

r

]

+ ln(x2 + p1
r z2− s1

r )−1

}
(10.18)

w1
rv(x,z) =

∫
Γn

ln(z1
r − s̄1

v)dΓn

= l

{
(x1 + p1

r z1)− s̄1
v

(x2− x1)+ p1
r (z2− z1)

ln
[
(x2 + p1

r z2)− s̄1
v

(x1 + p1
r z1)− s̄1

v

]

+ ln(x2 + p1
r z2− s̄1

v)−1

}
(10.19)

and

g1
r (x,z) =

∫
Γn

1
z1

r − s1
r

dΓn = l
[

1
(x2− x1)+ p1

r (z2− z1)
ln
(

x2 + p1
r z2− s1

r
x1 + p1

r z1− s1
r

)]
(10.20)

d1
rv(x,z) =

∫
Γn

1
z1

r − s̄1
v

dΓn = l
[

1
(x2− x1)+ p1

r (z2− z1)
ln
(

x2 + p1
r z2− s̄1

v
x1 + p1

r z1− s̄1
v

)]
(10.21)

When source point X is in material 1, and the field point x is in material 2, the corre-
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sponding integrals are

h21
rv (x,z) =

∫
Γn

ln(z2
r − s1

v)dΓn

= l

{
(x1 + p2

r z1)− s1
v

(x2− x1)+ p2
r (z2− z1)

ln
[
(x2 + p2

r z2)− s1
v

(x1 + p2
r z1)− s1

v

]

+ ln(x2 + p2
r z2− s1

v)−1

} (10.22)

and

g21
rv (x,z) =

∫
Γn

1
z2

r − s1
v

dΓn = l
[

1
(x2− x1)+ p2

r (z2− z1)
ln
(

x2 + p2
r z2− s1

v
x1 + p2

r z1− s1
v

)]
(10.23)

When source point X is in material 2, and the field point x is in material 1, the corre-
sponding integrals are

h12
rv (x,z) =

∫
Γn

ln(z1
r − s2

v)dΓn

= l

{
(x1 + p1

r z1)− s2
v

(x2− x1)+ p1
r (z2− z1)

ln[
(x2 + p1

r z2)− s2
v

(x1 + p1
r z1)− s2

v
]

+ ln(x2 + p1
r z2− s2

v)−1

} (10.24)

and

g12
rv (x,z) =

∫
Γn

1
z1

r − s2
v

dΓn = l
[

1
(x2− x1)+ p1

r (z2− z1)
ln
(

x2 + p1
r z2− s2

v
x1 + p1

r z1− s2
v

)]
(10.25)

When source point X is in material 2, and the field point x is in material 2, the corre-
sponding integrals are

h2
r (x,z) =

∫
Γn

ln(z2
r − s2

r )dΓn

= l

{
(x1 + p2

r z1)− s2
r

(x2− x1)+ p2
r (z2− z1)

ln
[
(x2 + p2

r z2)− s2
r

(x1 + p2
r z1)− s2

r

]

+ ln(x2 + p2
r z2− s2

r )−1

}
(10.26)

w2
rv(x,z) =

∫
Γn

ln(z2
r − s̄2

v)dΓn

= l

{
(x1 + p2

r z1)− s̄2
v

(x2− x1)+ p2
r (z2− z1)

ln
[
(x2 + p2

r z2)− s̄2
v

(x1 + p2
r z1)− s̄2

v

]

+ ln(x2 + p2
r z2− s̄2

v)−1

}
(10.27)
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and

g2
r (x,z) =

∫
Γn

1
z2

r − s2
r

dΓn = l
[

1
(x2− x1)+ p2

r (z2− z1)
ln
(

x2 + p2
r z2− s2

r
x1 + p2

r z1− s2
r

)]
(10.28)

d2
rv(x,z) =

∫
Γn

1
z2

r − s̄2
v

dΓn = l
[

1
(x2− x1)+ p2

r (z2− z1)
ln
(

x2 + p2
r z2− s̄2

v
x1 + p2

r z1− s̄2
v

)]
(10.29)

10.1.2 Derivatives of Bimaterial Green’s Functions
In order to obtain the strain and stress fields, we also need to take the derivative of the
Green’s displacement and traction with respect to the source point, and then find the corre-
sponding integration. The integration of the involved Green’s function derivatives for the
QWR domain can be written as

hr,x =
∫

Γn

∂ ln(zr− sr)
∂x

dΓn =− l
(x2− x1)+ pr(z2− z1)

ln
(

x2 + prz2− sr

x1 + prz1− sr

)
(10.30)

hr,z = prhr,x (10.31)

gr,x =
∫

Γn

∂

∂x
1

zr− sr
dΓn

=
l

(x2− x1)+ pr(z2− z1)

[
− 1

x2 + prz2− sr
+

1
x1 + prz1− sr

]
(10.32)

gr,z = prgr,x (10.33)

Again, similar expressions can be found for the corresponding bimaterial substrate.

10.2 Numerical Examples
Before applying our solution to examine the strain energy in QWR system, we have first
checked our program for the reduced cases with existing solutions [181]. We found that
our solution can be reduced exactly to the existing exact closed-form results [181]. Other
numerical tests have also carried out, all showing that our solution and program are correct.
Therefore, after validation, we now apply our solution to calculate the relative strain energy,
defined in section 10.2.1, and the distribution of the strain energy density. We remark that
while our BEM formulation can be applied to more complicated situations, here we only
study the reduced case where the QWR is free-standing on or embedded in the half-plane
substrate. The half-plane model is reduced from our bimaterial result by setting the upper
half-plane (z > 0) with very low material stiffness as compared to the lower half-plane
substrate (The material stiffness in the upper half-space is equal to 10−10 times the material
stiffness in the lower half-space).

10.2.1 Definition of the Relative Strain Energy
During growth of QWR nanostructures, strain energy in the QWR plays an important role.
Therefore, its calculation and prediction are of great interest. Following [29], the strain
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energy in the QWR can be expressed as

W =
1
2

∫
V

σi j(γi j− γ
∗
i j)dV (10.34)

We remark that the integrand σi j(γi j− γ∗i j)/2 is the strain energy density within the QWR,
which will be also calculated and studied.

Applying the Gauss divergence theorem and assuming that the eigenstrain is uniform
inside the QWR, the total elastic strain energy of QWR in Eq. (10.34) can be expressed
alternatively as

W =
1
2

∫
Γ

tiuidΓ− 1
2

∫
Γ

t( f w)
k ukdΓ+

1
2

∫
V

Ci jklγ
∗
i jγ
∗
kldV (10.35)

where Γ is the boundary of the QWR. While the first boundary integration on the right-hand
side of Eq. (10.35) represents the work done by the traction acting on the boundary, the
second boundary integration represents the work done by the traction associated with the
eigenstrain as we recall that t( f w)

k = Ci jklγ
∗
i jnl . The last volumetric integration corresponds

to the initial constant strain energy of the eigenstrain field, i.e., the constant strain energy
in the wetting layer (i.e., the thin layer covers the substrate) due to the misfit strain [182].

In QWR growth, one of the important parameters is the relative strain energy Λ [182,
183]. Namely, the ratio of the strain energy change relative to the constant strain energy in
the wetting layer due to the misfit strain over the constant strain energy, as defined below

Λ≡
W − 1

2
∫

V Ci jklγ
∗
i jγ
∗
kldV

1
2
∫

V Ci jklγ
∗
i jγ
∗
kldV

=
1
2
∫

Γ
tiuidΓ− 1

2
∫

Γ
t( f w)
k ukdΓ

1
2
∫

V Ci jklγ
∗
i jγ
∗
kldV

(10.36)

where Λ is also called the relative strain energy, which will be numerically examined in
the next section. We remark that while various energetic parameters were introduced for
characterizing defect dynamics [184], this relative strain energy has been successfully ap-
plied in the prediction of new QWR formation and QWR array patterns under the Stranski-
Krastanow growth mode [182, 183, 185].

10.2.2 Variation of Relative Strain Energy with QWR Depth
We first apply our bimaterial BEM program to study the problem where a square InAs(111)
QWR growing on a GaAs(111) substrate (Figure 10.2). The material properties of InAs and
GaAs in the (111)-direction are obtained by coordinate transform from those in the (001)-
directions [186]. The QWR has a dimension of 20 nm×20 nm and a uniform misfit strain
field γ∗xx = γ∗yy = γ∗zz = 0.07. The boundary condition on the surface of the substrate is as-
sumed to be traction-free. While a total free-standing QWR on the substrate is illustrated
in Figure 10.2a, a fully embedded QWR is shown in Figure 10.2c. We let d be the depth
of the QWR, measured from the bottom side of the QWR to the surface of substrate (Fig-
ure 10.2b). We then calculate the relative strain energy (i.e., Eq. (10.36)) of the QWR as
a function of depth d, varying from −10 nm (Figure 10.2a) to 70 nm, at the interval of
5 nm. Figure 10.3 shows clearly that with increasing depth d, the magnitude of the relative
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Figure 10.2: Geometry of a square InAs QWR on or inside the GaAs substrate. Shown in
(a) to (c) are the three special cases: Namely, totally free-standing (a), half free-standing
(half-in and half-out in (b)), and fully embedded (c).

strain energy increases, reaching the value when the QWR is within an infinite substrate
(= −0.19). In other words, bringing an embedded QWR to the surface will decrease the
relative strain energy. This is true since with increasing surface area of the QWR to the
air, more surface energy will be released, resulting in small relative strain energy. This
important feature could represent the competition between the surface and bulk energies
i.e. [187, 188], and should be particularly interesting to epitaxial growth.

10.2.3 Effect of QWR Shape on Relative Strain Energy and Distribu-
tion of Strain Energy Density

We assume now that there is an isosceles triangle of InAs (111) QWR, free-standing on the
GaAs (111) substrate. The base angle of the triangle varies from 30° to 75° while the area
of triangle maintains the same. The misfit strain is again uniform, i.e. γ∗xx = γ∗yy = γ∗zz = 0.07.
The boundary condition on the surface of the substrate is traction-free. Both the relative
strain energy and strain energy density in the QWR are investigated.

The relative strain energy for the triangular QWR with different base angles are listed in
Table 10.1 and its variation with the base angle are also shown in Figure 10.4. It is observed
that the magnitude of the relative strain energy increases with increasing base angle of the
QWR triangle. In other words, the steeper the QWR is, the larger the magnitude of the
relative strain energy becomes.

The contours of the strain energy density for these free-standing triangular QWRs are
plotted in Figures 10.5 and 10.6. It is clear that the strain energy density distribution is
strongly influenced by the QWR shape. Particularly at the locations near the vertex and
base corners, the strain energy densities are quite different among these triangles. We
further observed that the strain energy density near the vertex is larger than those near the
base corners. The magnitude of strain energy density increases roughly from 2.15 to 2.35
(109 kg/ms2) as the base angle varies from 30° to 75°.
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Figure 10.3: Variation of relative strain energy with depth of a square QWR.

Base angle (degree) Relative strain energy (×103)

30 -5.88
37 -6.91
45 -7.90
52 -8.70
60 -9.76
67 -11.1
75 -14.3

Table 10.1: Variation of relative strain energy with base angle of the isosceles triangle of
InAs (111) QWR, which is free-standing on the GaAs (111) substrate.
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Figure 10.4: Variation of relative strain energy with base angle of isosceles triangle of InAs
(111) QWR, which is free-standing on the GaAs (111) substrate.
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Figure 10.5: Contours of strain energy density (109 kg/ms2) in isosceles triangle of InAs
(111) QWR with base angle 30° (a) or 45° (b)
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10.3 Conclusions
In the chapter, we first derive the bimaterial Green’s functions in anisotropic elastic me-
dia in terms of the elegant Stroh formalism. The corresponding BEM formulation is then
presented. Since the involved Green’s functions are in exact closed forms, the kernel inte-
gration can be analytically carried out for the constant element discretization. After testing
our bimaterial BEM program for various reduced simple cases, we then apply our program
to calculate the strain energy density and the relative strain energy in InAs (111) QWR free-
standing on or embedded in GaAs (111) substrate. Our numerical results showed that, for
the case of an isosceles triangle of InAs (111) QWR on the substrate, the strain energy den-
sity within the QWR strongly depends on the base angle of the triangle. We also observed
that the magnitude of the relative strain energy for this case increases with increasing base
angle. For a square QWR either free standing on or embedded in the substrate, we found
that the magnitude of the relative strain energy increases with increasing depth of the QWR
in the substrate, which represents the competition between the surface and bulk energies.
Our numerical examples also demonstrate the significant influence of the QWR shape and
location on both the strain energy density and the relative strain energy in the QWR, which
should be particularly useful to the successful growth of QWRs via epitaxial approach.
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Chapter 11

Strain Energy On The Surface Of
Half-Plane Substrate Induced By An
Isolated QD

In this chapter, we present an analytical method for the QD-induced strain field in half-
space semiconductor substrates under the assumption of continuum elasticity. Furthermore,
under the epitaxial growth, the misfit strain within the QD could be gradient, instead of
uniform distribution [189], and as such, the material property in the QD could be difficult
to calibrate [190]. Thus, the well-known inclusion model will be adopted in this chapter.
It was verified recently that the inclusion model could predict slightly different results as
compared to the inhomogeneity model using the bulk property of the QD (about 10% within
the strained quantum structures, see, e.g., [24, 33]). Under these assumptions, we derive
our solution based on the Green’s function method in terms of the Stroh formalism with the
corresponding exact integration of the Green’s functions over the QD surface (composed
piecewise of flat triangles).

This chapter is organized as follows: In section 11.1, the strained QD system is de-
scribed. In section 11.2, the surface of the QD is approximated by a number of flat triangles
over which the area integration is carried out exactly so that the induced elastic fields can be
expressed in terms of a simple line integral over [0,π]. If the QD is a point source, then the
QD-induced elastic fields can be analytically expressed by point-force Green’s functions
in the half-space. In section 11.3, numerical examples are carried out for buried cubic,
pyramidal, truncated pyramidal, and point QDs in half-spaces. The effects of QD shape
and depth on the strain energy are discussed. Conclusions are drawn in section 11.4.

11.1 Problem description for QD Embedded in Anisotropic
Half-space Substrate

We now assume that the 3D point-force Green’s functions are given for the half-space
substrate, then for the general eigenstrain γ∗i j at x = (x1,x2,x3) within the QD domain V ,
the induced displacement at d = (d1,d2,d3) can be found using the superposition method.
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That is, the response is an integral, over V , of the equivalent body force defined by equa-
tion (2.10), multiplied by the point-force Green’s functions, as

uk(d) =−
∫
V

Uk
j (x;d)[Ci jlmγ

∗
lm(x)],idV (x) (11.1)

where Uk
j (x;d) is the jth Green’s elastic displacement at x due to a point force in the kth

direction applied at d. Integrating by parts and noting that the eigenstrain is nonzero only
in the QD domain V , Eq. (11.1) can be expressed alternatively as

uk(d) =
∫
V

Uk
j,xi

(x;d)Ci jlmγ
∗
lm(x)dV (x) (11.2)

If we further assume that the eigenstrain is constant within the QD domain V , then the
domain integration can be transformed to the boundary integration, that is

uk(d) = Ci jlmγ
∗
lm

∫
∂V

Uk
j (x;d)ni(x)dS(x) (11.3)

where ni(x) is the outward normal on the boundary ∂V of the QD.
In order to find the elastic strain, we take the derivatives of Eq. (11.3) with respect to

the observation point d (i.e., the source point of the point-force Green’s function), which
yields (for k, p = 1,2,3)

γkp(d) =
1
2

γ
∗
lmCi jlm

∫
∂V

[Uk
j,dp

(x;d)+U p
j,dk

(x;d)]ni(x)dS(x) (11.4)

The stresses inside and outside the QD are obtained from Eq. (2.4).
It is obvious that in order to solve the QD-induced elastic field, the key is to carry out

the surface integration involved in equations (11.3) and (11.4). This requires the integral of
the corresponding half-space Green’s functions, which are discussed below.

11.2 Integration of Half-space Green’s Functions over QD
Surfaces

We assume that the boundary of the QD can be approximated by a number of flat trian-
gles. We want to analytically integrate the half-space Green’s functions over one of the
flat triangles. To do so, we first briefly review the half-space Green’s functions in general
anisotropic semiconductors.

The half-space point-force Green’s function with source point at d and field point at x
can be expressed as a sum of an explicit infinite-space solution and a complementary part
in terms of a line integral over [0,π] [2]

U(x;d) = U∞(x;d) +
1

2π2

∫
π

0
ĀG1AT dθ (11.5)
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where overbar means complex conjugate, superscript T denotes matrix transpose, and

(G1)i j =
(B̄−1B)i j

−p̄ix3 + p jd3− [(x1−d1)cosθ +(x2−d2)sinθ ]
(11.6)

We point out that, on the right-hand side of Eq. (11.5), the first term corresponds to the
Green’s displacement tensor in an anisotropic infinite space. Its integration over a flat
triangle was presented by Wang et al. [191]. Also in Eqs. (11.5) and (11.6), the Stroh
eigenvalues p j, and matrices of eigenvectors A and B are all functions of θ as well as of
the elastic stiffness tensor of the semiconductor material.

In order to find the misfit strain-induced elastic fields, we also need the derivatives of
the Green’s displacement tensor with respect to the field point (x1,x2,x3) of the Green’s
function [64, 117]. They are found to be (where j = 1,2,3)

∂U(x;d)
∂x j

=
∂U∞(x;d)

∂x j
− 1

2π2

∫
π

0
ĀG2

〈
g j
〉

AT dθ (11.7)

where

(G2)i j =
(B̄−1B)i j

{−p̄ix3 + p jd3− [(x1−d1)cosθ +(x2−d2)sinθ ]}2 (11.8)

〈g1〉= diag[cosθ ,cosθ ,cosθ ] 〈g2〉= diag[sinθ ,sinθ ,sinθ ]
〈g3〉= diag[p̄1, p̄2, p̄3]

(11.9)

Again, since the integration on a flat triangle has already been presented for the infinite
part of the half-space Green’s function [191], we only need to present the integration of the
complementary part of the Green’s function, i.e., the integration of the second term on the
right-hand side of Eq. (11.7).

We consider first the integration of the Green’s displacement tensor. Again, we as-
sume that the QD surface can be effectively approximated by a number of flat triangles.
Therefore, the integral expression Eq. (11.3) over a flat triangle, ∆, is

uk(d) = Ci jlmγ
∗
lmni

∫
∆

Uk
j (x;d)dA(x) (11.10)

where ni is the outward normal to ∆. Substituting Eq. (11.5) into (11.10) and changing the
integration orders, the contribution from the complementary part can be expressed as

uk(d) =
1

2π2Ci jlmγ
∗
lmni

∫
π

0
Ā

∫
∆

G1d∆(x)

AT dθ (11.11)

While the outside line integration can be easily carried out by employing Gaussian
quadrature, we discuss the area integration over the flat triangle, which can be done ana-
lytically as will be shown below. Actually, since in the expression for G1 in Eq. (11.6), its
numerator is a function of θ only, the integration over the flat triangle ∆ needs to be carried
out for the following expression only.

F1(d j,θ) =
∫
∆

d∆(x)
−p̄ix3 + p jd3− [(x1−d1)cosθ +(x2−d2)sinθ ]

(11.12)
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Similarly, in order to find the QD-induced strain field, (Eqs. (11.4) and (11.7)), one needs
only to carry out the following area integration over the flat triangle.

F2(d j,θ) =
∫
∆

d∆(x)

{−p̄ix3 + p jd3− [(x1−d1)cosθ +(x2−d2)sinθ ]}2 (11.13)

The area integration over a flat triangle in Eqs. (11.12) and (11.13) can be carried out
exactly. To do so, we introduce the following transformation between the global coordinate
system x = (x1, x2, x3) and local coordinate system ξ = (ξ1,ξ2,ξ3) associated with the flat
triangle (Figure 11.1)  x1− x01

x2− x02
x3− x03

=

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 ξ1
ξ2
ξ3

 (11.14)

Then, the integration becomes (n = 1,2)

Fn(d j,θ) =
h∫

0

dξ2

l2−l2ξ2/h∫
−l1+l1ξ2/h

dξ1
1

[ f1(d j,θ)ξ1 + f2(d j,θ)ξ2 + f3(d j,θ)]n
(11.15)

where

f1(d j,θ) =−(p̄ia31 +a11 cosθ +a21 sinθ) (11.16)
f2(d j,θ) =−(p̄ia32 +a12 cosθ +a22 sinθ) (11.17)
f3(d j,θ) =−p̄i(x03 +a33ξ3)+ p jd3 +d1 cosθ +d2 sinθ

− (x01 +a13ξ3)cosθ − (x02 +a23ξ3)sinθ (11.18)

The integration can now be carried out, and the results are

F1(d j,θ) =
1
f1

[
f1l2 + f3

f2− f1l2/h
ln
(

f2h+ f3

f1l2 + f3

)
− − f1l1 + f3

f2 + f1l1/h
ln
(

f2h+ f3

− f1l1 + f3

)]
(11.19)

F2(d j,θ) =
1
f1

[
1

f2 + f1l1/h
ln
(

f2h+ f3

− f1l1 + f3

)
− 1

f2− f1l2/h
ln
(

f2h+ f3

f1l2 + f3

)]
(11.20)

With these exact expressions, the QD-induced displacement and strain fields can be
finally expressed in terms of the line integration over [0,π] (e.g., Eq. (11.11) for the induced
displacements). Again the line integration can be carried out numerically using 8-point
Gaussian quadrature.

11.3 Numerical Examples
We now apply our analytical solutions to calculate the strain energy induced by a buried
QD within the GaAs half-space substrate. The surface of the substrate is traction free. The
QD is located at depth d below the surface (Figure 11.2) and the misfit strain is hydro-
static, i.e. γ∗xx = γ∗yy = γ∗zz = 0.07. We point out that this misfit strain is relatively large and
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Figure 11.1: Geometry of the flat triangle ∆ (with corners 1,2,3), and transformation from
the global (x1,x2,x3) to local (ξ1,ξ2,ξ3) coordinates where ξ3 is along the outward normal
direction of the flat triangle.

the corresponding nonlinear influence will be pursued using other methods, such as the
multiscale meshless method [192]. As for the QD shape, we assume it to be either cubic,
pyramidal, truncated pyramidal, or point type. The QDs have the same height h (= 4 nm,
except for point QD). To make all the QDs (including the point QD) have the same volume,
we have the base length 2.155h for cubic QD, upper length 1.79h and lower length 2.5h
for truncated pyramid QD, base length 3.732h for pyramid QD (Figure 11.2). For the point
QD case, it is located at the middle height of the cubic QD (i.e., its vertical distance to the
surface is d + h/2). We studied the effect of the QD shape and depth on the strain energy
on the surface.

Shown in Figures 11.3a–d are, respectively, contours of the normalized strain energy on
the surface of GaAs (001) (top row) and GaAs (111) (bottom row), induced by a buried cu-
bic, truncated pyramidal, pyramidal or point type QD. In this example, the depth d = 2 nm,
height h = 4 nm, and the strain energy is normalized by 118.8×1015 N ·m. (This normal-
ization factor is also used for the strain energies in Table 11.1). It is clear that different
QD shapes (including point QD) induce different strain energy distributions on the surface
of the substrate. Besides the difference on the contour shape, the strain energy values are
also different. For example, the contours with value 0.3, 0.6 and 0.9 (corresponding, re-
spectively, to the heavy blue, red and black curves) move towards the center when the QD
shape changes from left to right (i.e., cubic, truncated pyramid, pyramid, and point type).
Table 11.1 lists the maximum strain energy values corresponding to different QD shapes
at different depths within the GaAs substrate with both (001) and (111) orientations. It is
clear from Table 11.1 that while the induced maximum strain energy value decreases with
increasing depth, its value on the substrate GaAs (001) is always larger than that of the
corresponding inclined substrate GaAs (111). Furthermore, the effect of the QD shapes
(cubic, truncated pyramid, pyramid, and point QD) on the strain energy is complicated, as
can be seen from Figures 11.3a–d. Also from Figures 11.3a–d, it is observed, by comparing
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(a) (b) (c) (d) 

Figure 11.2: Geometry for (a) a cubic QD, (b) a truncated pyramid QD, (c) a pyramid QD,
and (d) a point QD. Top row is the 3D view and bottom row is the vertical x-z plan view.
All these QDs have the same volume.

the top row to the bottom row, that the strain energy contour lines of equal value all move
towards the center, and that the contours shapes of the strain energy over GaAs (001) are
sharply different to those over GaAs (111).

We now study the effect of QD depth on the strain energy distribution on the surface.
The top row of Figure 11.4 shows the depths of cubic QD within the substrate where d
equals 1 nm, 2 nm, or 3 nm, while the strain energy distributions on the surface of GaAs
(001) and (111) are shown, respectively, in the middle and bottom rows. Again, the heavy
blue, red and black contour lines correspond, respectively, to the strain energy values of
0.3, 0.6, and 0.9. It is apparent from Figure 11.4 that as the QD moves away from the
surface, the strain energy contours approach to those due to a point QD with equal volume.
Similar numerical results are shown in Figures 11.5 and 11.6, respectively, for the truncated
pyramidal and pyramidal QDs. While the strain energy distributions induced by the pyra-
midal QD are similar to those by an equivalent-volume QD, those by cubic and truncated
pyramidal QD are different. These again demonstrate the effect of the QD shape and depth
on the strain energy.

11.4 Conclusions
In this chapter, we presented an analytical method for calculating the QD-induced strain
fields in half-space semiconductor substrates. The QD is assumed to be of any polyhedral
shape which can be efficiently approximated by a number of flat triangles. We studied
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Depth Cubic Truncated pyramid Pyramid

d = 1 nm (001) Emax 2.54 2.93 2.71

(x,y) (±1,±1) (±1,±1) (0,0)

(111) Emax 2.55 2.75 2.05

(x,y) (1,0) (1,0) (0,0)

d = 2 nm (001) Emax 1.77 1.99 0.96

(x,y) (0,0) (0,0) (0,0)

(111) Emax 1.31 1.34 0.75

(x,y) (0,0) (0,0) (0,0)

d = 3 nm (001) Emax 1.03 1.09 0.41

(x,y) (0,0) (0,0) (0,0)

(111) Emax 0.70 0.70 0.36

(x,y) (0,0) (0,0) (0,0)

Table 11.1: Maximum strain energy Emax on the surface of the substrate GaAs for different
QD shapes with different depths (unit of energy = 118.8×1015 N ·m).

Figure 11.3: Normalized strain energy on the surface of the half-space substrate of GaAs
(001) (top row) and GaAs (111) (bottom row) induced by (a) a cubic, (b) a truncated pyra-
mid, (c) a pyramid, and (d) a point QD, where the heavy blue, red and black lines corre-
spond to normalized strain energy of 0.3, 0.6 and 0.9 respectively. The QD is embedded
within the substrate with its top side at a depth d = 2 nm from the surface.
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Figure 11.4: Geometry of a cubic QD within a half-space substrate with different depth
d: the vertical x-z plan view (top row), and the strain energy induced by the cubic QD in
substrate GaAs(001) (middle row) and GaAs (111) (bottom row): (a) d = 1, (b) d = 2, and
(c) d = 3. The heavy blue, red and black lines correspond to normalized strain energy of
0.3, 0.6 and 0.9 respectively.
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Figure 11.5: Geometry of a truncated pyramid QD within a half-space substrate with dif-
ferent depth d: the vertical x-z plan view (top row), and the strain energy induced by the
truncated pyramid QD in substrate GaAs(001) (middle row) and GaAs (111) (bottom row):
(a) d = 1, (b) d = 2, and (c) d = 3. The heavy blue, red and black lines correspond to
normalized strain energy of 0.3, 0.6 and 0.9 respectively.
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Figure 11.6: Geometry of a pyramid QD within a half-space substrate with different depth
d: the vertical x-z plan view (top row), and the strain energy induced by the pyramid QD
in substrate GaAs(001) (middle row) and GaAs (111) (bottom row): (a) d = 1, (b) d = 2,
and (c) d = 3. The heavy blue, red and black lines correspond to normalized strain energy
of 0.3, 0.6 and 0.9 respectively.
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cubic, pyramidal, truncated pyramidal and point QDs within the GaAs (001) and GaAs
(111) half-space substrates. The numerical results illustrate that the shape of the QDs has
apparent influence on the strain energy distribution on the surface, so is the depth of the
QDs. These results should be interesting to the overgrowth of QDs on the substrate where
the long-range strain energy on the surface plays an important role in controlling the new
QD patterns and shapes.
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Chapter 12

Elastic And Electric Fields Distribution
In AlN QDs Structures

In the previous reports, we used an analytical method based on Green’s functions and the
Stroh formalism to calculate the induced elastic fields in and around GaAs quantum dot
(QD) heterostructures embedded in anisotropic half-space [193]. In this chapter, we extend
the analytical solution to nitride-based QDs structures which have a strong built-in electric
field.

We consider in detail the case of AlN QDs in the shape of hexagonal truncated-pyramids.
Two different growth orientations are studied: one is AlN (0001) growing along the (0001)
axis and the other is AlN (1000) growing along the polar direction. A schematic 3D view of
an AlN QD is shown in Figure 12.1a with cross section in x-y plane shown in Figure 12.1b.
The QD size is determined by the top and base diameters of the pyramid, Rb = 8.5 nm and
Rt = 4 nm. h = 4.1 nm is the QD height and d = 6.9 nm is the distance between top of
QD and half space surface. The size of the QD is used to close to the experimental values
[194].

Before looking at multiple dots, a single isolated hexagonal truncated-pyramidal dot
is studied to facilitate comparison with simplified model in which the QD is assumed to
be a point [2]. The calculated electric potential distributions induced by a single QD are
presented at the free surface (Figure 12.2). The strain distributions along a line scan A
(Figure 12.1a) are shown in Figure 12.3. The results are compared to those of previously
published calculations for a single point dot. Very similar trends are observed. We also in-
vestigated the electric potential distribution on the surface due to two hexagonal truncated-
pyramidal QDs when the distance Dx (Figure 12.1c) between two QDs is equal to 25 nm
(Figure 12.4). These results provide a very useful framework to analyze the properties of
nitride-based QDs structures.
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Figure 12.1: Schematic diagrams of hexagonal truncated-pyramidal QD showing dot shape
and geometrical parameters. (a) 3D view of a single QD buried under half space substrate.
Line A is parallel to the z-axis; (b) View of the QD structure in x-y plane; (c) View of two
QDs in x-z plane.
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Figure 12.2: (a) Contours of the electric potential Φ on the surface of AlN (0001) due to a
hexagonal truncated-pyramidal QD. (b) Contours of the electric potential Φ on the surface
of AlN (1000) due to a hexagonal truncated-pyramidal QD.

175



0 4 8 12 16 20

-0.2

-0.15

-0.1

-0.05

0

0.05

gxx
gzz
gxx+gyy+gzz

 

(a)
0 4 8 12 16 20

-0.2

-0.15

-0.1

-0.05

0

0.05

gxx
gzz
gxx+gyy+gzz

 

(b)

Figure 12.3: Strain distributions along line A of the QD embedded in a matrix of (a) AlN
(0001) or (b) AlN (1000). The dashed line denotes γxx, the dot-dashed line γzz, and the solid
line hydrostatic strain γxx + γyy + γzz.
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Figure 12.4: (a) Contours of the electric potential Φ on the surface of AlN (0001) due to
two hexagonal truncated-pyramidal QDs. (b) Contours of the electric potential Φ on the
surface of AlN (1000) due to two hexagonal truncated-pyramidal QDs. The distance Dx
between the two QDs is 25 nm.
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Chapter 13

Ab initio calculation on magnetic and
magnetoelectric coupling effect on a
series of perovskite compounds

Oxides with perovskite or perovskite-related structures display a large variety of intriguing
physical properties and raise several important fundamental issues in solid-state chemistry
and physics. The research of these materials is also of great interest because of their promis-
ing technological applications. For example, simple perovskite oxides such as SrTiO3
and BaTiO3 have been studied extensively and are already widely used in electronic de-
vices. Some of the intriguing physical properties found recently in perovskite oxides and
perovskite-related oxides are the high-Tc superconductivity of cupric oxides, the colossal
magnetoresistance (MR) of manganese oxides, and multiferroicity of BiFeO3. These prop-
erties will be useful in future electronics and spintronics.

The general formula of the perovskite oxide structure is ABO3, in which A represents
relatively large cations such as alkaline metal, alkaline-earth metal, and lanthanide ions,
while B generally represents transition-metal ions. The structure is described as a frame-
work of corner-sharing BO6 octahedra that contains A cations in 12-fold-coordinated sites.
By introduction of additional elements into the A or B sites, ordered superstructures are of-
ten stabilized, and the special-ordered arrangements of the A or B cations in the perovskite
structures open up possibilities for making compounds with new properties. Large numbers
of B-site ordered compounds have been obtained, such as Sr2FeMoO6, La2NiMnO6, etc. In
this project, a series of calculations has been carried out on the A-site-ordered perovskites,
that is, TbCu3Mn4O12, CaFe3Ti4O12 and CaFeTi2O6.

For TbCu3Mn4O12, the electronic and magnetic properties of the three-magnetic-sublattice
double perovskite TbCu3Mn4O12 are investigated by performing density functional the-
ory calculations along with the analysis of the spin-orbit coupling (SOC) effect on Tb3+

(4f 8) ions at A sites. The electronic structure calculations show that TbCu3Mn4O12 is
half-metallic and its half-metallicity can only be correctly described when the electron
correlation on Tb3+ 4f 8 electrons is considered. The energies of different magnetic config-
urations among the three magnetic sublattices are also calculated, revealing that the mag-
netic configuration with Mn and Cu spins in the antiparallel arrangement and with the Tb
magnetic moments ferromagnetically/antiferromagnetically (FM/AFM) coupled to Cu/Mn
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Figure 13.1: The GGA predicted ground state magnetic configuration-AF2. (The arrow
directions represent the spin arrangement)

spins (that is Tb↓Cu3
↓Mn4

↑O12) is the lowest energetic magnetic state, which is consis-
tent with recent experimental results. The magnetic anisotropy is further calculated for the
[111], [110], and [001] spin quantization directions. It is found that the [111]-direction is
more stable than the [110]- and [001]-directions by 123 meV and 135 meV per formula
unit, respectively, indicating a significant magnetic anisotropy. Our detailed projected par-
tial density of states analysis finally shows that Tb is expected to interact ferromagnetically
with A-site Cu and antiferromagnetically with B-site Mn sublattices by way of 4f -2p-3d.

Figure 13.1 in the follow shows the lowest energy magnetic configuration of TbCu3Mn4O12.
Based on this magnetic configuration, its electronic structures obtained at different calcu-
lating levels are analyzed in detail, as seen in Figure 13.2, which shows that at the lower
symmetry due to the spin-orbit coupling, Tb 4f electronic configuration is correctly de-
scribed using GGA+U method. TbCu3Mn4O12 is half-metallic. As to the magnetic cou-
pling between Tb-4f and Cu-3d as well as Mn-3d, the calculations reveal that it is by way
of 4f -O2p-3d, which is shown in Figures 13.3a and 13.3b.

The electronic and magnetic properties of CaFe3Ti4O12 and CaFeTi2O6 were also in-
vestigated using density functional theory. The calculations predict that CaFe3Ti4O12 is
an insulator with its Fe2+ ions preferably being antiferromagnetically coupled by the Fe-
O-Ti-O-Fe path. Such electronic and magnetic properties are similar to its isostructural
perovskite CaCu3Ti4O12. On the other hand, the calculations indicate CaFeTi2O6 is half
metallic and its Fe2+ ions are inclined to be ferromagnetically coupled. The different mag-
netic interactions in CaFe3Ti4O12 and CaFeTi2O6 are ascribed to their different orbital
occupations since orbital ordering and magnetic ordering are closely correlated in transi-
tion metal perovskites. This theoretical investigation suggests that altering coordination
of A-site transition metal ions (Fe2+ in the investigated system) in A’A3Ti4O12 double
perovskites is another way to control their magnetic properties. Figure 13.4 present the
different crystal structures for these two compounds and the different coordination of Fe2+

ions. Figure 13.5 shows the different orbital occupation within these two compounds. Fig-
ure 13.6 shows that CaFe3Ti4O12 is semiconductor while CaFeTi2O6 is half-metallic.
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Figure 13.2: Total density of states (TDOS) along with partial density of states (PDOS) of
4f orbitals calculated for TbCu3Mn4O12 in the AF2 magnetic state using different methods.
(a) GGA, (b) GGA+U with Uf 6.0 eV, (c) GGA+SOC [111], and (e) GGA+Uf [111] with
Uf = 6.0 eV at lower symmetry. The Fermi energy is indicated by the dotted line. The
positive and negative values indicate spin up and spin down, respectively.
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Figure 13.3: (a) Density of states (DOS) versus electronic energy for electrons of orbitals
Tb-4f, O-2p, Cu-3d, and Mn-3d. (b) Electronic density distributions for electrons with
energies in the range of -2.0 to -1.5 eV. Distributions colored red are for electrons with spin
down (↓), and distributions colored blue are for electrons with spin up (↑).
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Figure 13.4: Crystal structures and the coordination environment of Fe ions of
CaFe3Ti4O12 in the left and CaFeTi2O6 in the right.
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Figure 13.5: Electron density plots around Fermi level for (a) AFM CaFe3Ti4O12 (dxy, dxz
and dyz orbitals are the same due to its m-3 point group symmetry in this perovskite) and
(b) FM CaFeTi2O6 (isosurface at 0.1 e/Å3 produced using XCRYSDEN).
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Figure 13.6: GGA calculated total density of states for (a) CaFe3Ti4O12 in AFM and (b)
CaFeTi2O6 in FM; and GGA+Ueff (Ueff = 4.0 eV) calculated results for (c) CaFe3Ti4O12 in
AFM and (d) CaFeTi2O6 in FM.
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